numpy/scipy中非线性函数的数值梯度

Posted

技术标签:

【中文标题】numpy/scipy中非线性函数的数值梯度【英文标题】:Numerical gradient for nonlinear function in numpy/scipy 【发布时间】:2018-03-20 08:50:18 【问题描述】:

我正在尝试在 numpy 中实现数值梯度计算,以用作 cyipopt 中梯度的回调函数。我对numpy梯度函数的理解是它应该返回基于finite different approximation的点计算的梯度。

我不明白如何使用此模块实现非线性函数的梯度。给出的示例问题似乎是一个线性函数。

>>> f = np.array([1, 2, 4, 7, 11, 16], dtype=np.float)
>>> np.gradient(f)
array([ 1. ,  1.5,  2.5,  3.5,  4.5,  5. ])
>>> np.gradient(f, 2)
array([ 0.5 ,  0.75,  1.25,  1.75,  2.25,  2.5 ])

我的代码sn-p如下:

import numpy as np

# Hock & Schittkowski test problem #40
x = np.mgrid[0.75:0.85:0.01, 0.75:0.8:0.01, 0.75:0.8:0.01, 0.75:0.8:0.01]
# target is evaluation at x = [0.8, 0.8, 0.8, 0.8]
f = -x[0] * x[1] * x[2] * x[3]
g = np.gradient(f)

print g

另一个缺点是我必须在几个点评估 x(它会在几个点返回梯度) 在 numpy/scipy 中是否有更好的选择,以便在 single 点对梯度进行数值评估,以便我可以将其作为回调函数实现?

【问题讨论】:

【参考方案1】:

首先,一些警告:

数值优化很难做到正确 ipopt 是很复杂的软件 将 ipopt 与数值微分结合听起来像是在自找麻烦,但这当然取决于您的问题 ipopt 几乎总是基于automatic-differentiation tools 而不是numerical-differentiation!

还有更多:

因为这是一项复杂的任务,而且 python + ipopt 的状态不如其他一些语言(例如julia + JuMP),所以有点工作

还有一些替代方案:

使用 pyomo 包裹 ipopt 并具有自动微分功能 使用casadi,它也包装了ipopt并具有自动微分功能 使用autograd 自动计算 numpy-code 子集的梯度 然后使用 cyipopt 添加这些 scipy.minimize with solvers SLSQP or COBYLA 可以为你做任何事情(SLSQP 可以使用等式和不等式约束;COBYLA 仅限于不等式约束,其中通过x >= y + x <= y 模拟等式约束可以 em> 工作)

使用工具完成任务

您的完整示例问题在Test Examples for Nonlinear Programming Codes 中定义:

这是一些基于数值微分的代码,用于解决您的测试问题,包括官方设置(函数、渐变、起点、边界......)

import numpy as np
import scipy.sparse as sps
import ipopt
from scipy.optimize import approx_fprime


class Problem40(object):
    """ # Hock & Schittkowski test problem #40
            Basic structure  follows:
            - cyipopt example from https://pythonhosted.org/ipopt/tutorial.html#defining-the-problem
            - which follows ipopt's docs from: https://www.coin-or.org/Ipopt/documentation/node22.html
            Changes:
            - numerical-diff using scipy for function & constraints
            - removal of hessian-calculation
              - we will use limited-memory approximation
                - ipopt docs: https://www.coin-or.org/Ipopt/documentation/node31.html
              - (because i'm too lazy to reason about the math; lagrange and co.)
    """
    def __init__(self):
        self.num_diff_eps = 1e-8  # maybe tuning needed!

    def objective(self, x):
        # callback for objective
        return -np.prod(x)  # -x1 x2 x3 x4

    def constraint_0(self, x):
        return np.array([x[0]**3 + x[1]**2 -1])

    def constraint_1(self, x):
        return np.array([x[0]**2 * x[3] - x[2]])

    def constraint_2(self, x):
        return np.array([x[3]**2 - x[1]])

    def constraints(self, x):
        # callback for constraints
        return np.concatenate([self.constraint_0(x),
                               self.constraint_1(x),
                               self.constraint_2(x)])

    def gradient(self, x):
        # callback for gradient
        return approx_fprime(x, self.objective, self.num_diff_eps)

    def jacobian(self, x):
        # callback for jacobian
        return np.concatenate([
            approx_fprime(x, self.constraint_0, self.num_diff_eps),
            approx_fprime(x, self.constraint_1, self.num_diff_eps),
            approx_fprime(x, self.constraint_2, self.num_diff_eps)])

    def hessian(self, x, lagrange, obj_factor):
        return False  # we will use quasi-newton approaches to use hessian-info

    # progress callback
    def intermediate(
            self,
            alg_mod,
            iter_count,
            obj_value,
            inf_pr,
            inf_du,
            mu,
            d_norm,
            regularization_size,
            alpha_du,
            alpha_pr,
            ls_trials
            ):

        print("Objective value at iteration #%d is - %g" % (iter_count, obj_value))

# Remaining problem definition; still following official source:
# http://www.ai7.uni-bayreuth.de/test_problem_coll.pdf

# start-point -> infeasible
x0 = [0.8, 0.8, 0.8, 0.8]

# variable-bounds -> empty => np.inf-approach deviates from cyipopt docs!
lb = [-np.inf, -np.inf, -np.inf, -np.inf]
ub = [np.inf, np.inf, np.inf, np.inf]

# constraint bounds -> c == 0 needed -> both bounds = 0
cl = [0, 0, 0]
cu = [0, 0, 0]

nlp = ipopt.problem(
            n=len(x0),
            m=len(cl),
            problem_obj=Problem40(),
            lb=lb,
            ub=ub,
            cl=cl,
            cu=cu
            )

# IMPORTANT: need to use limited-memory / lbfgs here as we didn't give a valid hessian-callback
nlp.addOption(b'hessian_approximation', b'limited-memory')
x, info = nlp.solve(x0)
print(x)
print(info)

# CORRECT RESULT & SUCCESSFUL STATE

输出:

******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
 Ipopt is released as open source code under the Eclipse Public License (EPL).
         For more information visit http://projects.coin-or.org/Ipopt
******************************************************************************

This is Ipopt version 3.12.8, running with linear solver mumps.
NOTE: Other linear solvers might be more efficient (see Ipopt documentation).

Number of nonzeros in equality constraint Jacobian...:       12
Number of nonzeros in inequality constraint Jacobian.:        0
Number of nonzeros in Lagrangian Hessian.............:        0

Total number of variables............................:        4
                     variables with only lower bounds:        0
                variables with lower and upper bounds:        0
                     variables with only upper bounds:        0
Total number of equality constraints.................:        3
Total number of inequality constraints...............:        0
        inequality constraints with only lower bounds:        0
   inequality constraints with lower and upper bounds:        0
        inequality constraints with only upper bounds:        0

Objective value at iteration #0 is - -0.4096
iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   0 -4.0960000e-01 2.88e-01 2.53e-02   0.0 0.00e+00    -  0.00e+00 0.00e+00   0
Objective value at iteration #1 is - -0.255391
   1 -2.5539060e-01 1.28e-02 2.98e-01 -11.0 2.51e-01    -  1.00e+00 1.00e+00h  1
Objective value at iteration #2 is - -0.249299
   2 -2.4929898e-01 8.29e-05 3.73e-01 -11.0 7.77e-03    -  1.00e+00 1.00e+00h  1
Objective value at iteration #3 is - -0.25077
   3 -2.5076955e-01 1.32e-03 3.28e-01 -11.0 2.46e-02    -  1.00e+00 1.00e+00h  1
Objective value at iteration #4 is - -0.250025
   4 -2.5002535e-01 4.06e-05 1.93e-02 -11.0 4.65e-03    -  1.00e+00 1.00e+00h  1
Objective value at iteration #5 is - -0.25
   5 -2.5000038e-01 6.57e-07 1.70e-04 -11.0 5.46e-04    -  1.00e+00 1.00e+00h  1
Objective value at iteration #6 is - -0.25
   6 -2.5000001e-01 2.18e-08 2.20e-06 -11.0 9.69e-05    -  1.00e+00 1.00e+00h  1
Objective value at iteration #7 is - -0.25
   7 -2.5000000e-01 3.73e-12 4.42e-10 -11.0 1.27e-06    -  1.00e+00 1.00e+00h  1

Number of Iterations....: 7

                                   (scaled)                 (unscaled)
Objective...............:  -2.5000000000225586e-01   -2.5000000000225586e-01
Dual infeasibility......:   4.4218750883118219e-10    4.4218750883118219e-10
Constraint violation....:   3.7250202922223252e-12    3.7250202922223252e-12
Complementarity.........:   0.0000000000000000e+00    0.0000000000000000e+00
Overall NLP error.......:   4.4218750883118219e-10    4.4218750883118219e-10


Number of objective function evaluations             = 8
Number of objective gradient evaluations             = 8
Number of equality constraint evaluations            = 8
Number of inequality constraint evaluations          = 0
Number of equality constraint Jacobian evaluations   = 8
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations             = 0
Total CPU secs in IPOPT (w/o function evaluations)   =      0.016
Total CPU secs in NLP function evaluations           =      0.000

EXIT: Optimal Solution Found.
[ 0.79370053  0.70710678  0.52973155  0.84089641]
'x': array([ 0.79370053,  0.70710678,  0.52973155,  0.84089641]), 'g': array([  3.72502029e-12,  -3.93685085e-13,   5.86974913e-13]), 'obj_val': -0.25000000000225586, 'mult_g': array([ 0.49999999, -0.47193715,  0.35355339]), 'mult_x_L': array([ 0.,  0.,  0.,  0.]), 'mult_x_U': array([ 0.,  0.,  0.,  0.]), 'status': 0, 'status_msg': b'Algorithm terminated successfully at a locally optimal point, satisfying the convergence tolerances (can be specified by options).'

代码备注

我们使用scipy's approx_fprime,它基本上是在scipy.optimize 中为所有基于梯度的优化器添加的 如来源中所述;我没有在意 ipopt 对 hessian 的需求,我们使用了 ipopts hessian-approximation 基本思想描述在wiki: LBFGS 我确实忽略了 ipopts 对 Jacobian 约束的稀疏结构的需要 默认假设:使用了默认的粗麻布结构是下三角矩阵,我不会对这里可能发生的事情做出任何保证(性能不佳与破坏一切)李>

【讨论】:

感谢您的详细回复!在使用 numdifftools 进行了一些实验并正确编写了梯度和雅可比的回调(仍然省略了 Hessian 计算)之后,我能够得到与您相同的结果。但是,我注意到结果与显式计算梯度和雅可比时的结果不同。我得到x=array([ 0.75487767, 0.75487765, 0.4950983 , 0.86883695])。我猜这是使用数值微分的一个陷阱。 这需要分析。当有一个独特的解决方案时,这不应该发生(应该是这种情况;我提到了一个可能的问题和一个要调整的参数)!人们在定义这些时经常会犯错误。不知道你有没有,但我只是提一下。你的退出状态还好吗? 我的输出和你的一样。我收到的唯一警告与缺少库有关:Failed to load 'libmetis.so' - using fallback AMD code 此警告仅涉及性能。嗯...鉴于这些信息,我们无需分析太多。 好的,经过进一步检查,我的显式雅可比计算中有一个错字。现在我对这两种方法都有相同的结果,根据this website,预期的Objective=-0.25000000008228956【参考方案2】:

我认为您对什么是数学函数以及它的数值实现方式存在某种误解。

你应该将你的函数定义为:

def func(x1, x2, x3, x4):
    return -x1*x2*x3*x4

现在您想在特定点评估您的功能,您可以使用您提供的np.mgrid 来完成。

如果要计算梯度,请使用copy.misc.derivative(https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.derivative.html)(注意dx的默认参数通常不好,将其更改为1e-5。线性和非线性梯度没有区别对于数值评估,只有非线性函数的梯度不会在任何地方都相同。

您对np.gradient 所做的实际上是从数组中的点计算梯度,函数的定义被f 的定义隐藏,因此不允许在不同点进行多个梯度评估。使用你的方法也会让你依赖于你的离散化步骤。

【讨论】:

以上是关于numpy/scipy中非线性函数的数值梯度的主要内容,如果未能解决你的问题,请参考以下文章

numpy+scipy+matlotlib+scikit-learn的安装及问题解决

Numpy / Scipy中的快速线性插值“沿路径”

深度学习——线性单元和梯度下降

在Python / Numpy / Scipy中找到两个数组之间的插值交集

5月深度学习班第2课高效计算基础与图像线性分类器

numpy pandas1