如何用张量流计算 AUC?

Posted

技术标签:

【中文标题】如何用张量流计算 AUC?【英文标题】:How to calculate AUC with tensorflow? 【发布时间】:2017-01-19 00:10:47 【问题描述】:

我已经使用 Tensorflow 构建了一个二元分类器,现在我想使用 AUC 和准确度来评估分类器。

就准确性而言,我可以很容易地这样做:

X = tf.placeholder('float', [None, n_input])
y = tf.placeholder('float', [None, n_classes])
pred = mlp(X, weights, biases, dropout_keep_prob)
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

在计算 AUC 时,我使用以下公式:

print(tf.argmax(pred, 1).dtype.name)
print(tf.argmax(pred, 1).dtype.name)

a = tf.cast(tf.argmax(pred, 1),tf.float32)
b = tf.cast(tf.argmax(y,1),tf.float32)

auc = tf.contrib.metrics.streaming_auc(a, b)

在训练循环中:

train_acc = sess.run(accuracy, feed_dict=X: batch_xs, y: batch_ys, dropout_keep_prob:1.)
train_auc = sess.run(auc, feed_dict=X: batch_xs, y: batch_ys, dropout_keep_prob:1.)

这给了我以下输出(和错误)错误:

int64
int64
/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/array_ops.py:1197: VisibleDeprecationWarning: converting an array with ndim > 0 to an index will result in an error in the future
  result_shape.insert(dim, 1)
Net built successfully...

Starting training...

Epoch: 000/300 cost: 0.618990561
Traceback (most recent call last):
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 715, in _do_call
    return fn(*args)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 697, in _run_fn
    status, run_metadata)
  File "/usr/lib/python3.5/contextlib.py", line 66, in __exit__
    next(self.gen)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/errors.py", line 450, in raise_exception_on_not_ok_status
    pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors.FailedPreconditionError: Attempting to use uninitialized value auc/false_positives
     [[Node: auc/false_positives/read = Identity[T=DT_FLOAT, _class=["loc:@auc/false_positives"], _device="/job:localhost/replica:0/task:0/cpu:0"](auc/false_positives)]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "./mlp_.py", line 152, in <module>
    train_auc = sess.run(auc, feed_dict=X: batch_xs, y: batch_ys, dropout_keep_prob:1.)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 372, in run
    run_metadata_ptr)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 636, in _run
    feed_dict_string, options, run_metadata)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 708, in _do_run
    target_list, options, run_metadata)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 728, in _do_call
    raise type(e)(node_def, op, message)
tensorflow.python.framework.errors.FailedPreconditionError: Attempting to use uninitialized value auc/false_positives
     [[Node: auc/false_positives/read = Identity[T=DT_FLOAT, _class=["loc:@auc/false_positives"], _device="/job:localhost/replica:0/task:0/cpu:0"](auc/false_positives)]]
Caused by op 'auc/false_positives/read', defined at:
  File "./mlp_.py", line 121, in <module>
    auc = tf.contrib.metrics.streaming_auc(a, b)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/metrics/python/ops/metric_ops.py", line 718, in streaming_auc
    predictions, labels, thresholds, ignore_mask)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/metrics/python/ops/metric_ops.py", line 603, in _tp_fn_tn_fp
    false_positives = _create_local('false_positives', shape=[num_thresholds])
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/metrics/python/ops/metric_ops.py", line 75, in _create_local
    collections=collections)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/variables.py", line 211, in __init__
    dtype=dtype)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/variables.py", line 319, in _init_from_args
    self._snapshot = array_ops.identity(self._variable, name="read")
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/gen_array_ops.py", line 831, in identity
    result = _op_def_lib.apply_op("Identity", input=input, name=name)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/op_def_library.py", line 704, in apply_op
    op_def=op_def)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 2260, in create_op
    original_op=self._default_original_op, op_def=op_def)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 1230, in __init__
    self._traceback = _extract_stack()

我不明白我做错了什么以及为什么在使用准确性时只有代码运行良好,但在使用 AUC 时会引发此错误。 您能否提示我正确的方向以了解如何解决此问题?

我的目标是计算 AUC 和 ROC,以便更好地评估二元分类器的性能。

【问题讨论】:

你没有忘记 sess.run(tf.initialize_all_variables()) 吗? @rvinas 不,我这样做了(尽管我没有在这里包含它)。我认为问题在于auc的定义。我尝试了其他一些变体并转换为 float32,但仍然出现错误。 【参考方案1】:

我在github 上发现了同样的问题。目前,您似乎还需要运行sess.run(tf.initialize_local_variables()) 才能使tf.contrib.metrics.streaming_auc() 工作。他们正在努力。

这里有一个示例演示如何解决此问题:

import tensorflow as tf

a = tf.Variable([0.1, 0.5])
b = tf.Variable([0.2, 0.6])

auc = tf.contrib.metrics.streaming_auc(a, b)

sess = tf.Session()
sess.run(tf.initialize_all_variables())
sess.run(tf.initialize_local_variables()) # try commenting this line and you'll get the error
train_auc = sess.run(auc)

print(train_auc)

【讨论】:

成功了!我在 github 上发现了一个关于 AUC 实施的问题,但我找不到这个问题!谢谢!

以上是关于如何用张量流计算 AUC?的主要内容,如果未能解决你的问题,请参考以下文章

如何计算张量流中RNN的困惑度

张量流图中的梯度是不是计算不正确?

pytorch 可以优化顺序操作(如张量流图或 JAX 的 jit)吗?

如何用ansys的命令流进行焊接温度场及应力场计算

如何计算张量流模型中可训练参数的总数?

计算张量流损失时的几何平均值