Pandas - 计算每个客户对每个特定产品的购买次数

Posted

技术标签:

【中文标题】Pandas - 计算每个客户对每个特定产品的购买次数【英文标题】:Pandas - Count number of purchase for each customer for each specific product 【发布时间】:2022-01-11 02:00:22 【问题描述】:

JSON 文件中的输入数据、交易历史记录:

"customer_id": "C1", "basket": ["product_id": "P3", "price": 506, "product_id": "P4", "price": 121], "date_of_purchase": "2018-09-01 11:09:00"
"customer_id": "C27", "basket": ["product_id": "P57", "price": 154, "product_id": "P42", "price": 349, "product_id": "P47", "price": 180], "date_of_purchase": "2021-09-06 04:52:08.505909"
"customer_id": "C1", "basket": ["product_id": "P3", "price": 506, "product_id": "P4", "price": 121], "date_of_purchase": "2018-10-01 11:09:00"

数据框:

    customer_id                                             basket            date_of_purchase
0          C4               ['product_id': 'P31', 'price': 26]  2021-09-06 05:47:08.505909
1         C13              ['product_id': 'P36', 'price': 566]  2021-09-06 03:52:08.505909
2         C15              ['product_id': 'P02', 'price': 839]  2021-09-06 05:48:08.505909
3         C22             ['product_id': 'P37', 'price': 1235]  2021-09-05 20:52:08.505909
4         C27  ['product_id': 'P57', 'price': 154, 'produc...  2021-09-06 04:52:08.505909

我将 JSON 读入数据框的代码:

def read_json_folder(json_folder: str):
    transactions_files = glob.glob("*/*.json".format(json_folder))

    return pandas.concat(pandas.read_json(tf, lines=True) for tf in transactions_files)

对于每笔交易,我都需要客户 ID 以及他们购买特定产品的次数。

预期输出:

customer_id product_id purchase_count
C1          P2         11
C1          P3         5    
C2          P9         7

【问题讨论】:

你的数据框中已经有 JSON 了吗? @user17242583 是的,它已经在数据框中了。 你是怎么弄进去的?像这样? pd.json_normalize(j, record_path='basket', meta='customer_id')j 是 json 对象的列表) 【参考方案1】:

    从数据构建数据框

    read_json 带行参数 按篮子“行”展开篮子列表 在产品 ID 和价格中分解产品信息 删除不需要的列

    从 df 构建结果数据框

    分组和计数 重命名计数列
>>>TESTDATA="""
..."customer_id": "C1", "basket": ["product_id": "P3", "price": 506, "product_id": "P4", "price": 121], "date_of_purchase": "2018-09-01 11:09:00"
..."customer_id": "C27", "basket": ["product_id": "P57", "price": 154, "product_id": "P42", "price": 349, "product_id": "P47", "price": 180], "date_of_purchase": "2021-09-06 04:52:08.505909"
..."customer_id": "C1", "basket": ["product_id": "P3", "price": 506, "product_id": "P4", "price": 121], "date_of_purchase": "2018-10-01 11:09:00"
..."""
>>>df = pd.read_json(TESTDATA, lines=True)
>>>df = df.explode('basket')
>>>df[['product_id', 'price']] = df['basket'].apply(pd.Series)
>>>df.drop(['basket', 'price'], axis=1, inplace=True)
>>>df2 = df.groupby(['customer_id', 'product_id'], as_index=False).count()
>>>df2.rename(columns='date_of_purchase': 'purchase_count', inplace=True)
>>>df2
  customer_id product_id purchase_count
0          C1         P3              2
1          C1         P4              2
2         C27        P42              1
3         C27        P47              1
4         C27        P57              1

【讨论】:

第三列应该是 purchase_count 而不是 date_of_purchase @Casper2210 ,我加了一行重命名【参考方案2】:

如果你的数据框是这样的:

shop_list = [
"customer_id": "C1", "basket": ["product_id": "P3", "price": 506, "product_id": "P4", "price": 121], "date_of_purchase": "2018-09-01 11:09:00",
"customer_id": "C27", "basket": ["product_id": "P57", "price": 154, "product_id": "P42", "price": 349, "product_id": "P47", "price": 180], "date_of_purchase": "2021-09-06 04:52:08.505909",
"customer_id": "C1", "basket": ["product_id": "P3", "price": 506, "product_id": "P4", "price": 121], "date_of_purchase": "2018-10-01 11:09:00"
]

shop = pd.DataFrame(shop_list)

首先让每个客户获得所有产品位置

customer_groupby = shop.groupby('customer_id')['basket'].apply(list).to_dict()
for k in customer_groupby.keys():
  customer_groupby[k] = [item['product_id'] for sublist in customer_groupby[k] for item in sublist]

output: 
#'C1': ['P3', 'P4', 'P3', 'P4'], 'C27': ['P57', 'P42', 'P47']

然后创建结果表:

table= pd.DataFrame(columns=['customer_id', 'product_id', 'purchase_count'])
for customer,value in customer_groupby.items():
  items = set(value)
  for item in items:
    table= table.append('customer_id':customer, 'product_id':item, 'purchase_count':value.count(item), ignore_index=True)

最终结果:

【讨论】:

这个解决方案能回答你的问题吗?@Casper2210【参考方案3】:

试试这个:

purchase_counts = df.groupby(['customer_id', 'product_id'], as_index=False).count()

输出:

>>> purchase_counts
  customer_id product_id  price
0          C1         P3      2
1          C1         P4      2
2         C27        P42      1
3         C27        P47      1
4         C27        P57      1

【讨论】:

如果我的代码不适合您,您能否在问题中添加一个数据框示例?

以上是关于Pandas - 计算每个客户对每个特定产品的购买次数的主要内容,如果未能解决你的问题,请参考以下文章

如何使用 MongoDB 聚合对唯一 ID 求和?

pandas使用resample函数计算每个月的统计均值使用matplotlib可视化特定年份的按月均值

为每个产品密钥生成序列号并验证它们[关闭]

熊猫:来自 groupby.value_counts() 的字典

如何列出客户未购买的产品?

是否有查询选择哪些客户购买了特定产品以及这些客户购买了哪些其他产品?