具有匹配列的多个数据集的相关矩阵热图
Posted
技术标签:
【中文标题】具有匹配列的多个数据集的相关矩阵热图【英文标题】:Correlation matrix heatmap with multiple datasets that have matching columns 【发布时间】:2017-04-22 12:58:28 【问题描述】:如果我们有三个数据集:
X = pd.DataFrame("t":[1,2,3,4,5],"A":[34,12,78,84,26], "B":[54,87,35,25,82], "C":[56,78,0,14,13], "D":[0,23,72,56,14], "E":[78,12,31,0,34])
Y = pd.DataFrame("t":[1,2,3,4,5],"A":[45,24,65,65,65], "B":[45,87,65,52,12], "C":[98,52,32,32,12], "D":[0,23,1,365,53], "E":[24,12,65,3,65])
Z = pd.DataFrame("t":[1,2,3,4,5],"A":[14,96,25,2,25], "B":[47,7,5,58,34], "C":[85,45,65,53,53], "D":[3,35,12,56,236], "E":[68,10,45,46,85])
其中“t”是一个索引。
如何输出类似于 seaborn 示例的相关矩阵热图:
只是轴看起来像这样:
【问题讨论】:
【参考方案1】:X = pd.DataFrame("t":[1,2,3,4,5],"A":[34,12,78,84,26], "B":[54,87,35,25,82], "C":[56,78,0,14,13], "D":[0,23,72,56,14], "E":[78,12,31,0,34])
Y = pd.DataFrame("t":[1,2,3,4,5],"A":[45,24,65,65,65], "B":[45,87,65,52,12], "C":[98,52,32,32,12], "D":[0,23,1,365,53], "E":[24,12,65,3,65])
Z = pd.DataFrame("t":[1,2,3,4,5],"A":[14,96,25,2,25], "B":[47,7,5,58,34], "C":[85,45,65,53,53], "D":[3,35,12,56,236], "E":[68,10,45,46,85])
catted = pd.concat([d.set_index('t') for d in [X, Y, Z]], axis=1, keys=['X', 'Y', 'Z'])
catted = catted.rename_axis(['Source', 'Column'], axis=1)
corrmat = catted.corr()
f, ax = plt.subplots()
sns.heatmap(corrmat, vmax=.8, square=True)
sources = corrmat.columns.get_level_values(0)
for i, source in enumerate(sources):
if i and source != sources[i - 1]:
ax.axhline(len(sources) - i, c="w")
ax.axvline(i, c="w")
f.tight_layout()
对评论的回应:
我更改了X
、Y
和Z
中的t
列
X = pd.DataFrame("t":[1,2,3,4,5],"A":[34,12,78,84,26], "B":[54,87,35,25,82], "C":[56,78,0,14,13], "D":[0,23,72,56,14], "E":[78,12,31,0,34])
Y = pd.DataFrame("t":[6,7,8,9,10],"A":[45,24,65,65,65], "B":[45,87,65,52,12], "C":[98,52,32,32,12], "D":[0,23,1,365,53], "E":[24,12,65,3,65])
Z = pd.DataFrame("t":[11,12,13,14,15],"A":[14,96,25,2,25], "B":[47,7,5,58,34], "C":[85,45,65,53,53], "D":[3,35,12,56,236], "E":[68,10,45,46,85])
catted = pd.concat([d.set_index('t') for d in [X, Y, Z]], axis=1, keys=['X', 'Y', 'Z'])
catted = catted.rename_axis(['Source', 'Column'], axis=1)
corrmat = catted.corr()
f, ax = plt.subplots()
sns.heatmap(corrmat, vmax=.8, square=True)
sources = corrmat.columns.get_level_values(0)
for i, source in enumerate(sources):
if i and source != sources[i - 1]:
ax.axhline(len(sources) - i, c="w")
ax.axvline(i, c="w")
f.tight_layout()
现在又来了,不过我reset_index
X = pd.DataFrame("t":[1,2,3,4,5],"A":[34,12,78,84,26], "B":[54,87,35,25,82], "C":[56,78,0,14,13], "D":[0,23,72,56,14], "E":[78,12,31,0,34])
Y = pd.DataFrame("t":[6,7,8,9,10],"A":[45,24,65,65,65], "B":[45,87,65,52,12], "C":[98,52,32,32,12], "D":[0,23,1,365,53], "E":[24,12,65,3,65])
Z = pd.DataFrame("t":[11,12,13,14,15],"A":[14,96,25,2,25], "B":[47,7,5,58,34], "C":[85,45,65,53,53], "D":[3,35,12,56,236], "E":[68,10,45,46,85])
catted = pd.concat([d.reset_index(drop=True) for d in [X, Y, Z]], axis=1, keys=['X', 'Y', 'Z'])
catted = catted.rename_axis(['Source', 'Column'], axis=1)
corrmat = catted.corr()
f, ax = plt.subplots()
sns.heatmap(corrmat, vmax=.8, square=True)
sources = corrmat.columns.get_level_values(0)
for i, source in enumerate(sources):
if i and source != sources[i - 1]:
ax.axhline(len(sources) - i, c="w")
ax.axvline(i, c="w")
f.tight_layout()
【讨论】:
你知道为什么当我将相关矩阵应用于更大的数据时,它只显示对角线正方形吗?见图片:i.imgur.com/hLorwN2.png 我怀疑t
列未与X
、Y
和Z
对齐
在玩了之后,我发现我在这些块中的相关性非常小,以至于看起来这些方块中什么都没有。我改变了我的规模,现在它是完美的。感谢@piRSquared 的帮助。以上是关于具有匹配列的多个数据集的相关矩阵热图的主要内容,如果未能解决你的问题,请参考以下文章
在 pandas 中,如何在具有匹配行和列的 3 个单独数据帧之间建立相关矩阵?