将ARMA模型拟合到python中按时间索引的时间序列
Posted
技术标签:
【中文标题】将ARMA模型拟合到python中按时间索引的时间序列【英文标题】:Fitting ARMA model to time series indexed by time in python 【发布时间】:2016-06-21 23:37:09 【问题描述】:我正在尝试将 ARMA 模型拟合到存储在 pandas 数据框中的时间序列。数据框有一列名为“val”的 numpy.float64 类型的值和一个 pandas 时间戳索引。时间戳采用“年-月-日时:分:秒”格式。我理解以下代码:
from statsmodels.tsa.arima_model import ARMA
model = ARMA(df["val"], (1,0))
给我错误信息:
ValueError: Given a pandas object and the index does not contain dates
因为我没有正确格式化时间戳。如何索引我的数据帧,以便 ARMA 方法接受它,同时保留我的日期和时间信息?
【问题讨论】:
是index
Datetimeindex
吗?您可以查看print df.index
您的回答让我发现了我的代码中的一个错误。非常感谢!!!!!!
【参考方案1】:
我认为您需要将index
转换为DatetimeIndex
:
df.index = pd.DatetimeIndex(df.index)
示例:
import pandas as pd
from statsmodels.tsa.arima_model import ARMA
df=pd.DataFrame("val": pd.Series([1.1,1.7,8.4 ],
index=['2015-01-15 12:10:23','2015-02-15 12:10:23','2015-03-15 12:10:23']))
print df
val
2015-01-15 12:10:23 1.1
2015-02-15 12:10:23 1.7
2015-03-15 12:10:23 8.4
print df.index
Index([u'2015-01-15 12:10:23',u'2015-02-15 12:10:23',u'2015-03-15 12:10:23'], dtype='object')
df.index = pd.DatetimeIndex(df.index)
print df.index
DatetimeIndex(['2015-01-15 12:10:23', '2015-02-15 12:10:23',
'2015-03-15 12:10:23'],
dtype='datetime64[ns]', freq=None)
model = ARMA(df["val"], (1,0))
print model
<statsmodels.tsa.arima_model.ARMA object at 0x000000000D5247B8>
【讨论】:
以上是关于将ARMA模型拟合到python中按时间索引的时间序列的主要内容,如果未能解决你的问题,请参考以下文章