如何将 sklearn 预处理交互变量的输出连接回原始数据帧?
Posted
技术标签:
【中文标题】如何将 sklearn 预处理交互变量的输出连接回原始数据帧?【英文标题】:How to join output from sklearn preprocessing interaction variables back to original dataframe? 【发布时间】:2020-05-01 17:08:12 【问题描述】:我正在尝试为逻辑回归模型创建交互变量。我有 70 多个功能,我只想对其中的 6 个功能进行预处理。有谁知道如何从 fit_transform 中获取 numpy 数组并将这些交互加入到可能的原始数据帧中?此外,是否有一种优雅的方式来标记交互,以便我知道我在看什么?我想我会获取 numpy 数组并通过 pd.DateFrame 转换为数据帧,但在那之后我有点迷茫。先感谢您。我在下面找到了问题,但我仍然对我的特定用例感到有些困惑。
How to use sklearn fit_transform with pandas and return dataframe instead of numpy array?
到目前为止我的代码如下...
# Subset of dataframe to create interaction variables from
df_interactions = df[['x1','x2','x3','x4','x5','x6']]
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(interaction_only=True)
df_interactions_T = poly.fit_transform(degrees=2, df_interactions)
【问题讨论】:
只需将其设置为列:df[['x1','x2','x3','x4','x5','x6']] = poly.fit_transform(degrees=2, df[['x1','x2','x3','x4','x5','x6']])
【参考方案1】:
简答
您的列格式如下:
[1,
'x1',
'x2',
'x3',
'x4',
'x5',
'x6',
'x1 * x2',
'x1 * x3',
'x1 * x4',
'x1 * x5',
'x1 * x6',
'x2 * x3',
'x2 * x4',
'x2 * x5',
'x2 * x6',
'x3 * x4',
'x3 * x5',
'x3 * x6',
'x4 * x5',
'x4 * x6',
'x5 * x6']
如果您将这些值分配给gen_col_names
变量,并转换为DataFrame,您可以看到发生了什么。
pd.DataFrame(df_interactions_T,columns=gen_col_names)
长答案
让我们访问源代码,看看发生了什么: https://github.com/scikit-learn/scikit-learn/blob/b194674c4/sklearn/preprocessing/_data.py#L1516
组合的源代码如下:
from itertools import chain, combinations
from itertools import combinations_with_replacement as combinations_w_r
def _combinations(n_features, degree, interaction_only, include_bias):
comb = (combinations if interaction_only else combinations_w_r)
start = int(not include_bias)
return chain.from_iterable(comb(range(n_features), i)
for i in range(start, degree + 1))
创建数据:
import numpy as np
import pandas as pd
np.random.seed(0)
cols = ['x1','x2','x3','x4','x5','x6']
df = pd.DataFrame()
for col in cols:
df[col] = np.random.randint(1,10,100)
df_interactions = df[['x1','x2','x3','x4','x5','x6']]
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(interaction_only=True,degree=2)
df_interactions_T = poly.fit_transform(df_interactions)
你的参数如下:
n_features = 6
degree = 2
interaction_only = True
include_bias = True
combs = list(_combinations(n_features=6, degree=2, interaction_only=True, include_bias=True))
combs
[(),
(0,),
(1,),
(2,),
(3,),
(4,),
(5,),
(0, 1),
(0, 2),
(0, 3),
(0, 4),
(0, 5),
(1, 2),
(1, 3),
(1, 4),
(1, 5),
(2, 3),
(2, 4),
(2, 5),
(3, 4),
(3, 5),
(4, 5)]
您可以使用这些信息来生成列名:
gen_col_names = []
for i in combs:
if i == ():
gen_col_names.append(1)
if len(i) == 1:
gen_col_names.append(cols[i[0]])
if len(i) == 2:
gen_col_names.append(cols[i[0]] + ' * ' + cols[i[1]])
gen_col_names
[1,
'x1',
'x2',
'x3',
'x4',
'x5',
'x6',
'x1 * x2',
'x1 * x3',
'x1 * x4',
'x1 * x5',
'x1 * x6',
'x2 * x3',
'x2 * x4',
'x2 * x5',
'x2 * x6',
'x3 * x4',
'x3 * x5',
'x3 * x6',
'x4 * x5',
'x4 * x6',
'x5 * x6']
【讨论】:
以上是关于如何将 sklearn 预处理交互变量的输出连接回原始数据帧?的主要内容,如果未能解决你的问题,请参考以下文章
如何在 sklearn 中使用 OneHotEncoder 的输出?
将分类变量转换为伪变量后,如何从sklearn api中找到功能的重要性?