如何添加一条最适合散点图的线

Posted

技术标签:

【中文标题】如何添加一条最适合散点图的线【英文标题】:How to add a line of best fit to scatter plot 【发布时间】:2016-09-11 01:50:39 【问题描述】:

我目前正在使用 Pandas 和 matplotlib 来执行一些数据可视化,我想在我的散点图中添加一条最适合的线。

这是我的代码:

import matplotlib
import matplotlib.pyplot as plt
import pandas as panda
import numpy as np

def PCA_scatter(filename):

   matplotlib.style.use('ggplot')

   data = panda.read_csv(filename)
   data_reduced = data[['2005', '2015']]

   data_reduced.plot(kind='scatter', x='2005', y='2015')
   plt.show()

PCA_scatter('file.csv')

我该怎么做?

【问题讨论】:

这能回答你的问题吗? Code for best fit straight line of a scatter plot in python 【参考方案1】:

您可以使用np.polyfit()np.poly1d()。使用相同的x 值估计一次多项式,并添加到由.scatter() 绘图创建的ax 对象。举个例子:

import numpy as np

     2005   2015
0   18882  21979
1    1161   1044
2     482    558
3    2105   2471
4     427   1467
5    2688   2964
6    1806   1865
7     711    738
8     928   1096
9    1084   1309
10    854    901
11    827   1210
12   5034   6253

估计一次多项式:

z = np.polyfit(x=df.loc[:, 2005], y=df.loc[:, 2015], deg=1)
p = np.poly1d(z)
df['trendline'] = p(df.loc[:, 2005])

     2005   2015     trendline
0   18882  21979  21989.829486
1    1161   1044   1418.214712
2     482    558    629.990208
3    2105   2471   2514.067336
4     427   1467    566.142863
5    2688   2964   3190.849200
6    1806   1865   2166.969948
7     711    738    895.827339
8     928   1096   1147.734139
9    1084   1309   1328.828428
10    854    901   1061.830437
11    827   1210   1030.487195
12   5034   6253   5914.228708

和情节:

ax = df.plot.scatter(x=2005, y=2015)
df.set_index(2005, inplace=True)
df.trendline.sort_index(ascending=False).plot(ax=ax)
plt.gca().invert_xaxis()

获得:

还提供了线方程:

'y=0:.2f x + 1:.2f'.format(z[0],z[1])

y=1.16 x + 70.46

【讨论】:

trendline.plot(ax=ax) 行给了我一个无效的语法错误 z = np.polyfit(x=data_reduced[['2005']], y=data_reduced[['2015']], 1) 行给了我一个“位置参数跟随关键字参数”错误 对不起,degree 需要在=1 之前添加deg,见更新。 TypeError: 对于行 z = np.polyfit(x=data_reduced[['2005']], y=data_reduced[['2015']], deg=1),x 的预期一维向量。这是我的数据或代码的问题吗? 需要使用.loc[],所以单列变成pd.Series。使用[[]] 选择会保留一列作为DataFrame,因此会出现维度警告。更新,同样适用于下一行。不好意思,时间不早了……【参考方案2】:

另一个选项(使用np.linalg.lstsq):

# generate some fake data
N = 50
x = np.random.randn(N, 1)
y = x*2.2 + np.random.randn(N, 1)*0.4 - 1.8
plt.axhline(0, color='r', zorder=-1)
plt.axvline(0, color='r', zorder=-1)
plt.scatter(x, y)

# fit least-squares with an intercept
w = np.linalg.lstsq(np.hstack((x, np.ones((N,1)))), y)[0]
xx = np.linspace(*plt.gca().get_xlim()).T

# plot best-fit line
plt.plot(xx, w[0]*xx + w[1], '-k')

【讨论】:

【参考方案3】:

您可以使用Seaborn 一口气完成所有工作和情节。

import pandas as pd
import seaborn as sns
data_reduced= pd.read_csv('fake.txt',sep='\s+')
sns.regplot(data_reduced['2005'],data_reduced['2015'])

【讨论】:

但是我想用matplotlib! :( 这个解决方案多么简单,真是太棒了!非常感谢! 如果您想在循环和创建多个图表时一次查看一个图表,您仍然需要 matplotlib 的 plt.show() 【参考方案4】:

这涵盖了plotly 方法

#load the libraries

import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go

# create the data
N = 50
x = pd.Series(np.random.randn(N))
y = x*2.2 - 1.8

# plot the data as a scatter plot
fig = px.scatter(x=x, y=y) 

# fit a linear model 
m, c = fit_line(x = x, 
                y = y)

# add the linear fit on top
fig.add_trace(
    go.Scatter(
        x=x,
        y=m*x + c,
        mode="lines",
        line=go.scatter.Line(color="red"),
        showlegend=False)
)
# optionally you can show the slop and the intercept 
mid_point = x.mean()

fig.update_layout(
    showlegend=False,
    annotations=[
        go.layout.Annotation(
            x=mid_point,
            y=m*mid_point + c,
            xref="x",
            yref="y",
            text=str(round(m, 2))+'x+'+str(round(c, 2)) ,
        )
    ]
)
fig.show()

fit_line 在哪里

def fit_line(x, y):
    # given one dimensional x and y vectors - return x and y for fitting a line on top of the regression
    # inspired by the numpy manual - https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.lstsq.html 
    x = x.to_numpy() # convert into numpy arrays
    y = y.to_numpy() # convert into numpy arrays

    A = np.vstack([x, np.ones(len(x))]).T # sent the design matrix using the intercepts
    m, c = np.linalg.lstsq(A, y, rcond=None)[0]

    return m, c

【讨论】:

【参考方案5】:

上面的最佳答案是使用 seaborn。 补充一点,如果你用循环创建许多图,你仍然可以使用 matplotlib

    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt

    data_reduced= pd.read_csv('fake.txt',sep='\s+')
    for x in data_reduced.columns:
        sns.regplot(data_reduced[x],data_reduced['2015'])
        plt.show()

plt.show() 将暂停执行,以便您一次查看一个图

【讨论】:

【参考方案6】:

只是添加到(更新罗伯特卡尔霍恩的答案)。如果您不指定 x,y,您现在将在新版本的 pandas 上收到未来警告。

FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

所以,如下。

import pandas as pd
import seaborn as sns
data_reduced= pd.read_csv('fake.txt',sep='\s+')
sns.regplot(x=data_reduced['2005'],y=data_reduced['2015']) 

【讨论】:

以上是关于如何添加一条最适合散点图的线的主要内容,如果未能解决你的问题,请参考以下文章

Matplotlib 散点图图例

Excel中如何正确地画XY散点图

如何通过3D绘图中的线连接多个散点图?

EXCEL快速添加多组数据绘制散点图

如何在 ggplot2 散点图上覆盖 lm 对象的线

Matplotlib散点图传奇