根据字典替换数据框列中的值不起作用[重复]
Posted
技术标签:
【中文标题】根据字典替换数据框列中的值不起作用[重复]【英文标题】:Replace values in columns of dataframe based on dictionary not working [duplicate] 【发布时间】:2021-11-13 06:13:47 【问题描述】:您可以阅读下面的确切问题,但这基本上是我想要做的:
df1 = pd.DataFrame('A':['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3'])
newVals = dict('A0': 0,
'A1': 1,
'A2': 2,
'A3': 3)
for key, value in newVals.items():
df1['A'].replace(key, value)
当我这样做时,生成的数据框没有变化。
初始帖子:
好的,我正在分析来自 OSHA (osha_accident_injury.csv) 的工作场所事故数据。每一行都是在事故中受伤的特定人员。每列都是人或事故本身的特征。并且每个特征都被编码为具有相应字符串值的整数。我想用它的字符串定义替换每个整数。数字到字符串的映射列在 osha_accident_lookup.csv 中。事故代码的映射可以在 osha_accident_dictionary.csv 中找到,但我手动将它们输入到地图中。
但是,一些整数映射到多个字符串,因此它还取决于 osha_accident_lookup.csv 中的事故代码。因此,我创建了一个列表,其中包含每个特定事故代码的字典(将整数映射到字符串值)。但是,当我尝试用其特定的字典替换每一列时,它会返回原始数据框,而不是带有字符串值的数据框。谁能看到我做错了什么?
# create list of all distinct accident codes
code_list = []
for index in osha_accident_lookup.index:
if osha_accident_lookup['accident_code'][index] not in code_list:
code_list.append(osha_accident_lookup['accident_code'][index])
# remove values not found in actual data
code_list.remove('PTYP')
code_list.remove('COST')
code_list.remove('ENDU')
# create list of dictionaries, s.t. each item maps accident number to accident value
# there is a unique map for each unique accident code
mapList = []
for code in code_list:
temp_df = pd.DataFrame(osha_accident_lookup[osha_accident_lookup['accident_code'] == code])
temp_map = dict(zip(temp_df['accident_number'], temp_df['accident_value']))
mapList.append(temp_map)
# create dictionary that maps code from osha_accident_lookup to column name in osha_accident_injury.csv
code_to_column = dict("OCC": "occ_code", 'CAUS': 'fat_cause', 'DEGR': 'degree_of_inj',
"OPER": "const_op_cause", "EN": 'evn_factor', "FT": 'event_type', "HU": 'hum_factor', "IN":
"nature_of_inj", "BD": "part_of_body", "SO": "src_of_injury", "TASK": 'task_assigned')
# replace numbers in injury data with string values of what the #'s represent
iterator = 0
for item in mapList:
code = code_list[iterator]
col_name = code_to_column[code]
for key, value in item.items():
osha_accident_injury[col_name].replace(key: value)
iterator += 1
osha_accident_injury.csv(前 10 行):
FIELD1 | summary_nr | rel_insp_nr | age | sex | nature_of_inj | part_of_body | src_of_injury | event_type | evn_factor | hum_factor | occ_code | degree_of_inj | task_assigned | hazsub | const_op | const_op_cause | fat_cause | fall_distance | fall_ht | injury_line_nr | load_dt |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 18 | 10006732 | 0 | 10.0 | 12.0 | 15.0 | 13.0 | 18.0 | 1.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1 | 2017-03-20 01:00:11 EDT | ||||
1 | 26 | 159996 | 0 | 21.0 | 19.0 | 42.0 | 5.0 | 13.0 | 9.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1 | 2017-03-20 01:00:11 EDT | ||||
2 | 34 | 10013225 | 0 | 21.0 | 4.0 | 19.0 | 8.0 | 18.0 | 1.0 | 0.0 | 1.0 | 1.0 | 0270 | 0.0 | 0.0 | 0.0 | 1 | 2017-03-20 01:00:11 EDT | |||
3 | 42 | 10014439 | 0 | 1.0 | 10.0 | 24.0 | 2.0 | 3.0 | 1.0 | 0.0 | 2.0 | 2.0 | 0.0 | 0.0 | 0.0 | 1 | 2017-03-20 01:00:11 EDT | ||||
4 | 59 | 19523588 | 0 | 5.0 | 4.0 | 16.0 | 10.0 | 9.0 | 1.0 | 0.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1 | 2017-03-20 01:00:11 EDT | ||||
5 | 59 | 19523588 | 0 | 21.0 | 5.0 | 16.0 | 8.0 | 9.0 | 14.0 | 0.0 | 2.0 | 2.0 | 0.0 | 0.0 | 0.0 | 2 | 2017-03-20 01:00:11 EDT | ||||
6 | 59 | 19523588 | 0 | 21.0 | 5.0 | 16.0 | 6.0 | 9.0 | 14.0 | 0.0 | 2.0 | 2.0 | 0.0 | 0.0 | 0.0 | 3 | 2017-03-20 01:00:11 EDT | ||||
7 | 59 | 19523588 | 0 | 21.0 | 5.0 | 16.0 | 8.0 | 9.0 | 14.0 | 0.0 | 2.0 | 2.0 | 0.0 | 0.0 | 0.0 | 4 | 2017-03-20 01:00:11 EDT | ||||
8 | 59 | 19523588 | 0 | 21.0 | 5.0 | 16.0 | 8.0 | 9.0 | 14.0 | 0.0 | 2.0 | 2.0 | 0.0 | 0.0 | 0.0 | 5 | 2017-03-20 01:00:11 EDT | ||||
9 | 59 | 19523588 | 0 | 21.0 | 5.0 | 16.0 | 8.0 | 9.0 | 14.0 | 0.0 | 2.0 | 2.0 | 0.0 | 0.0 | 0.0 | 6 | 2017-03-20 01:00:11 EDT |
osha_accident_lookup.csv(前 10 行):
accident_code | accident_number | accident_value | accident_letter | load_date |
---|---|---|---|---|
OPER | 1 | Backfilling and compacting | 2018-11-09 20:56:02 EST | |
OPER | 2 | Bituminous concrete placement | 2018-11-09 20:56:02 EST | |
OPER | 3 | Construction of playing fields, tennis courts | 2018-11-09 20:56:02 EST | |
SO | 1 | AIRCRAFT | 2018-11-09 20:56:02 EST | |
SO | 2 | AIR PRESSURE | 2018-11-09 20:56:02 EST | |
SO | 3 | ANIMAL/INS/REPT/ETC. | 2018-11-09 20:56:02 EST | |
OCC | 757 | Separating, filtering & clarifying mach. operators | 2018-11-09 20:56:02 EST | |
OCC | 758 | Compressing and compacting machine operators | 2018-11-09 20:56:02 EST | |
OCC | 759 | Painting and paint spraying machine operators | 2018-11-09 20:56:02 EST | |
OCC | 763 | Roasting and baking machine operators, food | 2018-11-09 20:56:02 EST |
osha_data_dictionary.csv(前 10 行):
table_name | column_name | attribute_name | definition | column_datatype | display_name |
---|---|---|---|---|---|
osha_accident | nonbuild_ht | Non Building Height | Construction - height in feet when not a building | Numeric, Length=4 | Height for Non-Building |
osha_accident | project_type | Project Type | Construction - project type (code table PTYP) | Alphanumeric, Length:1 | Project Type |
osha_accident | event_date | Event Date | Date of accident (yyyymmdd) | Numeric, Length=8 | Event Date |
osha_accident | event_keyword | Event Keyword | Contains comma separated keywords entered by ERG during the review process. | Alphanumeric, Length:200 | Event Keyword |
osha_accident | report_id | Report ID | Identifies the OSHA federal or state reporting jurisdiction | Numeric, Length=7 | Reporting ID |
osha_accident | event_desc | Event Description | Short description of event | Alphanumeric, Length:60 | Event Description |
osha_accident | load_dt | Load Date Timestamp | The date the load was completed. | date | No Label |
osha_accident | summary_nr | Summary NR | Identifies the accident OSHA-170 form | Numeric, Length=9 | Summary NR |
osha_accident | fatality | Fatality | X=Fatality is associated with accident | Alphanumeric, Length:1 | Fatality |
【问题讨论】:
尝试使用merge
。此外,您还可以通过告诉我们哪个 csv 中的哪些列应该映射到另一个 csv 中的哪些列来提供更多信息
我刚刚给出了我的问题的一个抽象版本,它有同样的问题。这会让问题更容易回答吗?
【参考方案1】:
根据你的例子试试这个方法。
df1['A'] = df1['A'].map(newVals)
【讨论】:
以上是关于根据字典替换数据框列中的值不起作用[重复]的主要内容,如果未能解决你的问题,请参考以下文章