传递给内核的cupy变量被忽略

Posted

技术标签:

【中文标题】传递给内核的cupy变量被忽略【英文标题】:cupy variables passed to kernel ignored 【发布时间】:2020-11-30 17:00:32 【问题描述】:

我修改了一个cupy 示例来测试一个简单的函数,但有些变量似乎没有取正确的值。代码如下:

import cupy as cp
import numpy as np
import sys

from cupy import prof
from timeit import default_timer as timer


_cupy_preprocessing_src = r"""
extern "C"

    __global__ void _cupy_preprocessing(
            const float * __restrict__ toNormalize,
            float * __restrict__ normalized,
            const int w,
            const int h,
            const float B,
            const float G,
            const float R)
    
        const int tx  static_cast<int>(blockIdx.x * blockDim.x + threadIdx.x) ;
        const int stride  static_cast<int>(blockDim.x * gridDim.x) ;

        for(int tid = tx; tid < (w * h); tid += stride)
        
            normalized[tid] = toNormalize[tid + w * h * 2] * 255.0 - B;
            normalized[tid + w * h] = toNormalize[tid + w * h] * 255.0 - G;
            normalized[tid + w * h * 2] = toNormalize[tid] * 255.0 - R; 
        
    

"""


def _preprocessing(toNorm, norm, w, h, B, G, R):
    device_id = cp.cuda.Device()
    numSM = device_id.attributes["MultiProcessorCount"]
    threadsperblock = (128, )
    blockspergrid = (numSM * 20, )

    module = cp.RawModule(code=_cupy_preprocessing_src, options=("-std=c++11"))
    kernel = module.get_function("_cupy_preprocessing")

    kernel_args = (toNorm, norm, w, h, B, G, R)

    kernel(blockspergrid, threadsperblock, kernel_args)

    cp.cuda.runtime.deviceSynchronize()


def gpu_preprocessing(toNorm, w, h, B, G, R):
    norm = cp.empty(toNorm.shape, dtype=toNorm.dtype)

    _preprocessing(toNorm, norm, w, h, B, G, R)

    return norm


def cpu_preprocessing(toNorm, w, h, B, G, R):
    norm = np.empty(toNorm.shape, dtype=toNorm.dtype)
    for i in range(w * h):
        norm[i] = toNorm[i + w * h * 2] * 255.0 - B;
        norm[i + w * h] = toNorm[i + w * h] * 255.0 - G;
        norm[i + w * h * 2] = toNorm[i] * 255.0 - R;

    return norm


if __name__ == "__main__":
    w = 512
    h = 512
    B = 1.0
    G = 1.0
    R = 1.0
    x = np.zeros((w * h * 3, ), dtype=np.float32)
    x[:w * h] = np.ones((w * h, ), dtype=np.float32)
    x[w * h:w * h * 2] = np.ones((w * h, ), dtype=np.float32) + 1.0
    x[w * h * 2:] = np.ones((w * h, ), dtype=np.float32) + 2.0
    d_x = cp.array(x)

    start = timer()
    cpu_ppre = cpu_preprocessing(x, w, h, B, G, R)
    end = timer()
    print("CPU time: :f".format(end - start))

    start = timer()
    gpu_ppre = gpu_preprocessing(d_x, w, h, B, G, R)
    end = timer()
    print("GPU time: :f".format(end - start))

    gpu_ppre = cp.asnumpy(gpu_ppre)

    print(cpu_ppre)
    print(gpu_ppre)

如果B = G = R = 0.0cpu_preprocessinggpu_preprocessing返回相同的数组,而如果BGR不为零,cpu_preprocessing返回预期值,@987654330 @ 似乎反而忽略了 BGR 的值。 我错过了什么吗?

【问题讨论】:

【参考方案1】:

换行试试

kernel_args = (toNorm, norm, w, h, B, G, R)

kernel_args = (toNorm, norm, w, h, cp.float32(B), cp.float32(G), cp.float32(R))

看看结果是否固定。您正在传递 Python 浮点数,但我认为 CuPy 无法推断出要转换为的正确位宽。

另外,你错过了一个逗号(它应该是一个元组):options=("-std=c++11", )

【讨论】:

以上是关于传递给内核的cupy变量被忽略的主要内容,如果未能解决你的问题,请参考以下文章

使用 ctypes 将 cupy 指针传递给 CUDA 内核

将变量从linux内核传递给进程

如何使用 PyOpenCL 将带有数组和变量的 C 结构传递给 OpenCL 内核

在cupy中使用元素内核对条目求和的问题

uboot环境变量(设置bootargs向linux内核传递正确的参数)

centos内核引导参数