如何使用 Python 读取大型 Firestore 集合而不会遇到 503 超时错误
Posted
技术标签:
【中文标题】如何使用 Python 读取大型 Firestore 集合而不会遇到 503 超时错误【英文标题】:How to use Python to read a large Firestore collection without running into 503 timeout error 【发布时间】:2021-05-18 22:54:32 【问题描述】:Cloud Firestore 有一个默认的 60 秒限制来读取集合。当集合中文档过多时,连接会超时并抛出 503 错误。
如何处理?我开发了一个解决方案——
【问题讨论】:
【参考方案1】:解决这个问题的方法是使用分页查询,将数据分成批次或“页面”,递归处理。然而Firestore documentation 并没有为此提供完整的解决方案。所以在阅读了this post 之后,我决定编写一个“准备使用”的函数,如下所示。它将 Firestore 集合提取到 CSV 文件中。您可以修改 CSV 编写器部分以适合您使用 Firestore 数据的目的。
我还在this GitHub repo 中分享了使用此功能的演示。如果你想进一步开发它,欢迎你 fork 它。
# Demo of extracting Firestore data into CSV file using a paginated algorithm (can prevent 503 timeout error for large dataset)
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore
from datetime import datetime
import csv
def firestore_to_csv_paginated(db, coll_to_read, fields_to_read, csv_filename='extract.csv', max_docs_to_read=-1, write_headers=True):
""" Extract Firestore collection data and save in CSV file
Args:
db: Firestore database object
coll_to_read: name of collection to read from in Unicode format (like u'CollectionName')
fields_to_read: fields to read (like ['FIELD1', 'FIELD2']). Will be used as CSV headers if write_headers=True
csv_filename: CSV filename to save
max_docs_to_read: max # of documents to read. Default to -1 to read all
write_headers: also write headers into CSV file
"""
# Check input parameters
if (str(type(db)) != "<class 'google.cloud.firestore_v1.client.Client'>") or (type(coll_to_read) is not str) or not (isinstance(fields_to_read, list) or isinstance(fields_to_read, tuple) or isinstance(fields_to_read, set)):
print(f'??? datetime.now().strftime("%Y-%m-%d %H:%M:%S") firestore_to_csv() - Unexpected parameters: \n\tdb = db \n\tcoll_to_read = coll_to_read \n\tfields_to_read = fields_to_read')
return
# Read Firestore collection and write CSV file in a paginated algorithm
page_size = 1000 # Preset page size (max # of rows per batch to fetch/write at a time). Adjust in your case to avoid timeout in default 60s
total_count = 0
coll_ref = db.collection(coll_to_read)
docs = []
cursor = None
try:
# Open CSV file and write header if required
print(f'>>> datetime.now().strftime("%Y-%m-%d %H:%M:%S") firestore_to_csv() - Started processing collection coll_to_read...')
with open(csv_filename, 'w', newline='', encoding='utf-8') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fields_to_read, extrasaction='ignore', restval='Null')
if write_headers:
writer.writeheader()
print(f'<<< datetime.now().strftime("%Y-%m-%d %H:%M:%S") firestore_to_csv() - Finished writing CSV headers: str(fields_to_read) \n---')
# Append each page of data fetched into CSV file
while True:
docs.clear() # Clear page
count = 0 # Reset page counter
if cursor: # Stream next page starting from cursor
docs = [snapshot for snapshot in coll_ref.limit(page_size).order_by('__name__').start_after(cursor).stream()]
else: # Stream first page if cursor not defined yet
docs = [snapshot for snapshot in coll_ref.limit(page_size).order_by('__name__').stream()]
print(f'>>> datetime.now().strftime("%Y-%m-%d %H:%M:%S") firestore_to_csv() - Started writing CSV row total_count+1...') # +1 as total_count starts at 0
for doc in docs:
doc_dict = doc.to_dict()
# Process columns (e.g. add an id column)
doc_dict['FIRESTORE_ID'] = doc.id # Capture doc id itself. Comment out if not used
# Process rows (e.g. convert all date columns to local time). Comment out if not used
for header in doc_dict.keys():
if (header.find('DATE') >= 0) and (doc_dict[header] is not None) and (type(doc_dict[header]) is not str):
try:
doc_dict[header] = doc_dict[header].astimezone()
except Exception as e_time_conv:
print(f'??? datetime.now().strftime("%Y-%m-%d %H:%M:%S") firestore_to_csv() - Exception in converting timestamp of doc.id in doc_dict[header]', e_time_conv)
# Write rows but skip certain rows. Comment out "if" and unindent "write" and "count" lines if not used
if ('TO_SKIP' not in doc_dict.keys()) or (('TO_SKIP' in doc_dict.keys()) and (doc_dict['TO_SKIP'] is not None) and (doc_dict['TO_SKIP'] != 'VALUE_TO_SKIP')):
writer.writerow(doc_dict)
count += 1
# Check if finished writing last page or exceeded max limit
total_count += count # Increment total_count
if len(docs) < page_size: # Break out of while loop after fetching/writing last page (not a full page)
break
else:
if (max_docs_to_read >= 0) and (total_count >= max_docs_to_read):
break # Break out of while loop after preset max limit exceeded
else:
cursor = docs[page_size-1] # Move cursor to end of current page
continue # Continue to process next page
except Exception as e_read_write:
print(f'??? datetime.now().strftime("%Y-%m-%d %H:%M:%S") firestore_to_csv() - Exception in reading Firestore collection / writing CSV file:', e_read_write)
else:
print(f'<<< datetime.now().strftime("%Y-%m-%d %H:%M:%S") firestore_to_csv() - Finished writing CSV file with total_count rows of data \n---')
【讨论】:
以上是关于如何使用 Python 读取大型 Firestore 集合而不会遇到 503 超时错误的主要内容,如果未能解决你的问题,请参考以下文章
读取大型 csv 文件、python、pandas 的随机行