大数据(9f)Flink双流JOIN

Posted 小基基o_O

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据(9f)Flink双流JOIN相关的知识,希望对你有一定的参考价值。

文章目录

概述

Flink双流JOIN可用算子或SQL实现,FlinkSQL的JOIN在另一篇讲
算子JOIN中较常用的是intervalJoin

开发环境

WIN10+IDEA

<properties>
    <maven.compiler.source>8</maven.compiler.source>
    <maven.compiler.target>8</maven.compiler.target>
    <flink.version>1.14.6</flink.version>
    <scala.binary.version>2.12</scala.binary.version>
    <slf4j.version>2.0.3</slf4j.version>
    <log4j.version>2.17.2</log4j.version>
    <lombok.version>1.18.24</lombok.version>
</properties>
<dependencies>
    <!-- Flink -->
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-java</artifactId>
        <version>$flink.version</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-streaming-java_$scala.binary.version</artifactId>
        <version>$flink.version</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-clients_$scala.binary.version</artifactId>
        <version>$flink.version</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-runtime-web_$scala.binary.version</artifactId>
        <version>$flink.version</version>
    </dependency>
    <!-- 日志 -->
    <dependency>
        <groupId>org.slf4j</groupId>
        <artifactId>slf4j-api</artifactId>
        <version>$slf4j.version</version>
    </dependency>
    <dependency>
        <groupId>org.slf4j</groupId>
        <artifactId>slf4j-log4j12</artifactId>
        <version>$slf4j.version</version>
    </dependency>
    <dependency>
        <groupId>org.apache.logging.log4j</groupId>
        <artifactId>log4j-to-slf4j</artifactId>
        <version>$log4j.version</version>
    </dependency>
    <!-- 简化JavaBean书写 -->
    <dependency>
        <groupId>org.projectlombok</groupId>
        <artifactId>lombok</artifactId>
        <version>$lombok.version</version>
    </dependency>
</dependencies>

使用状态列表实现 INNER JOIN(双流connect后CoProcessFunction)

import org.apache.flink.api.common.functions.RuntimeContext;
import org.apache.flink.api.common.state.ListState;
import org.apache.flink.api.common.state.ListStateDescriptor;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.ConnectedStreams;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoProcessFunction;
import org.apache.flink.util.Collector;

public class Hello 
    public static void main(String[] args) throws Exception 
        //创建执行环境,设置并行度
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment().setParallelism(1);
        //创建双流
        DataStreamSource<Tuple2<String, Long>> d1 = env.fromElements(
                Tuple2.of("a", 2L),
                Tuple2.of("a", 3L),
                Tuple2.of("b", 5L)
        );
        DataStreamSource<Tuple2<String, String>> d2 = env.fromElements(
                Tuple2.of("a", "A"),
                Tuple2.of("b", "B"),
                Tuple2.of("c", "C")
        );
        //双流KeyBy
        KeyedStream<Tuple2<String, Long>, String> kd1 = d1.keyBy(t -> t.f0);
        KeyedStream<Tuple2<String, String>, String> kd2 = d2.keyBy(t -> t.f0);
        //connect
        ConnectedStreams<Tuple2<String, Long>, Tuple2<String, String>> c = kd1.connect(kd2);
        //CoProcessFunction<IN1, IN2, OUT>
        c.process(new CoProcessFunction<Tuple2<String, Long>, Tuple2<String, String>, String>() 
            ListState<Tuple2<String, Long>> l1;
            ListState<Tuple2<String, String>> l2;
            @Override
            public void open(Configuration parameters) 
                RuntimeContext r = getRuntimeContext();
                l1 = r.getListState(new ListStateDescriptor<>("L1", Types.TUPLE(Types.STRING, Types.LONG)));
                l2 = r.getListState(new ListStateDescriptor<>("L2", Types.TUPLE(Types.STRING, Types.STRING)));
            

            @Override
            public void processElement1(Tuple2<String, Long> value, Context ctx, Collector<String> out) throws Exception 
                l1.add(value);
                for (Tuple2<String, String> value2 : l2.get()) 
                    out.collect(value + "==>" + value2);
                
            

            @Override
            public void processElement2(Tuple2<String, String> value, Context ctx, Collector<String> out) throws Exception 
                l2.add(value);
                for (Tuple2<String, Long> value1 : l1.get()) 
                    out.collect(value1 + "==>" + value);
                
            
        ).print();
        //流环境执行
        env.execute();
    

基于间隔的JOIN(Interval Join)

import lombok.AllArgsConstructor;
import lombok.Data;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.ProcessJoinFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;

public class Hello 
    public static void main(String[] args) throws Exception 
        //创建执行环境,设置并行度
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment().setParallelism(1);
        //创建双流和时间时间水位线策略
        SingleOutputStreamOperator<U> d1 = env.fromElements(
                new U("a", 3 * 1000L),
                new U("b", 8 * 1000L),
                new U("c", 13 * 1000L)
        ).assignTimestampsAndWatermarks(WatermarkStrategy.<U>forMonotonousTimestamps().withTimestampAssigner(
                (SerializableTimestampAssigner<U>) (element, recordTimestamp) -> element.timestamp));
        SingleOutputStreamOperator<U> d2 = env.fromElements(
                new U("a", 4 * 1000L),
                new U("b", 6 * 1000L),
                new U("b", 7 * 1000L),
                new U("c", 10 * 1000L)
        ).assignTimestampsAndWatermarks(WatermarkStrategy.<U>forMonotonousTimestamps().withTimestampAssigner(
                (SerializableTimestampAssigner<U>) (element, recordTimestamp) -> element.timestamp));
        //键控流
        KeyedStream<U, String> k1 = d1.keyBy(u -> u.id);
        KeyedStream<U, String> k2 = d2.keyBy(u -> u.id);
        //基于间隔进行联合
        k1.intervalJoin(k2).between(Time.seconds(-2L), Time.seconds(1L)).process(
                new ProcessJoinFunction<U, U, String>() 
                    @Override
                    public void processElement(U left, U right, Context ctx, Collector<String> out) 
                        out.collect(left + " ==> " + right);
                    
                ).print();
        //流环境执行
        env.execute();
    

    @Data
    @AllArgsConstructor
    public static class U 
        String id;
        Long timestamp;
    

结果
Hello.U(id=a, timestamp=3000) ==> Hello.U(id=a, timestamp=4000)
Hello.U(id=b, timestamp=8000) ==> Hello.U(id=b, timestamp=6000)
Hello.U(id=b, timestamp=8000) ==> Hello.U(id=b, timestamp=7000)

双流JOIN是双向的,下面两种写法是等价的

k1.intervalJoin(k2).between(Time.seconds(-2L), Time.seconds(1L))
k2.intervalJoin(k1).between(Time.seconds(-1L), Time.seconds(2L))

基于窗口的JOIN(Window Join)

窗口JOIN包括滚动窗口、滑动窗口、会话窗口

滚动窗口JOIN

滑动窗口JOIN

会话窗口JOIN

语法

stream.join(otherStream)
    .where(<KeySelector>)
    .equalTo(<KeySelector>)
    .window(<WindowAssigner>)
    .apply(<JoinFunction>)

下面只展示滚动窗口JOIN

import lombok.AllArgsConstructor;
import lombok.Data;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.以上是关于大数据(9f)Flink双流JOIN的主要内容,如果未能解决你的问题,请参考以下文章

2021年大数据Flink(四十五):​​​​​​扩展阅读 双流Join

面试官: Flink双流JOIN了解吗? 简单说说其实现原理

面试官: Flink双流JOIN了解吗? 简单说说其实现原理

Flink 维表Join/双流Join 方法总结

十分钟手撕Flink双流JOIN面试

Flink实时数据处理实践经验(Flink去重维表关联定时器双流join)