通过二维FFT变换对比加入窗函数之后的图像频谱和相位

Posted fpga和matlab

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了通过二维FFT变换对比加入窗函数之后的图像频谱和相位相关的知识,希望对你有一定的参考价值。

目录

一、理论基础

1.1二维FFT变换

1.2窗函数

二、核心程序

三、测试结果


一、理论基础

1.1二维FFT变换


以下公式定义 m×n 矩阵 X 的离散傅里叶变换 Y:

ωm 和 ωn 是复单位根:

        i 是虚数单位,p 和 j 是值范围从 0 到 m–1 的索引,q 和 k 是值范围从 0 到 n–1 的索引。在此公式中,X 和 Y 的索引平移 1 位,以反映 MATLAB® 中的矩阵索引。

        计算 X 的二维傅里叶变换等同于首先计算 X 每列的一维变换,然后获取每行结果的一维变换。换言之,命令 fft2(X) 等同于 Y = fft(fft(X).').'。

二维傅里叶变换:

 

二维傅里叶逆变换: 

       在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。

       图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅里叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅里叶变换就表示f的谱。从纯粹的数学意义上看,傅里叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅里叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅里叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅里叶逆变换是将图像的频率分布函数变换为灰度分布函数。

1、图像经过二维傅里叶变换后,其变换系数矩阵表明:

若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅里叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅里叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。

2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)。

1.2窗函数

        数字信号处理的主要数学工具是傅里叶变换.而傅里叶变换研究的是整个时间域和频率域的关系。不过,当运用计算机实现工程测试信号处理时,不可能对无限长的信号进行测量和运算,而是取其有限的时间片段进行分析。做法是从信号中截取一个时间片段,然后用截取的信号时间片段进行周期延拓处理,得到虚拟的无限长的信号,然后就可以对信号进行傅里叶变换、相关分析等数学处理。无限长的信号被截断以后,其频谱发生了畸变,原来集中在f(0)处的能量被分散到两个较宽的频带中去了(这种现象称之为频谱能量泄漏)。

        数字信号处理的主要数学工具是傅里叶变换.而傅里叶变换是研究整个时间域和频率域的关系。不过,当运用计算机实现工程测试信号处理时,不可能对无限长的信号进行测量和运算,而是取其有限的时间片段进行分析。做法是从信号中截取一个时间片段,然后用截取的信号时间片段进行周期延拓处理,得到虚拟的无限长的信号,然后就可以对信号进行傅里叶变换、相关分析等数学处理。无限长的信号被截断以后,其频谱发生了畸变,原来集中在f(0)处的能量被分散到两个较宽的频带中去了(这种现象称之为频谱能量泄漏)。为了减少频谱能量泄漏,可采用不同的截取函数对信号进行截断,截断函数称为窗函数,简称为窗。

       加窗实质是用一个所谓的窗函数与原始的时域信号作乘积的过程(当然加窗也可以在频域进行,但时域更为普遍),使得相乘后的信号似乎更好地满足傅立叶变换的周期性要求。如下图所示,原始的信号是不满足FFT变换的周期性要求的,变换后存在泄漏,如果施加一个窗函数,会在一定程度上减少泄漏。为了减少泄漏,用一个窗函数与原始周期信号相乘,得到加窗后的信号为周期信号,从而满足FFT变换的周期性要求。

        在实际进行数字信号处理时,往往需要把信号的观察时间限制在一定的时间间隔内,只需要选择一段时间信号对其进行分析。这样,取用有限个数据,即将信号数据截断的过程,就等于将信号进行加窗函数操作。而这样操作以后,常常会发生频谱分量从其正常频谱扩展开来的现象,即所谓的“频谱泄漏”。当进行离散傅立叶变换时,时域中的截断是必需的,因此泄漏效应也是离散傅立叶变换所固有的,必须进行抑制。而要对频谱泄漏进行抑制,可以通过窗函数加权抑制DFT的等效滤波器的振幅特性的副瓣,或用窗函数加权使有限长度的输入信号周期延拓后在边界上尽量减少不连续程度的方法实现。而在后面的FIR滤波器的设计中,为获得有限长单位取样响应,需要用窗函数截断无限长单位取样响应序列。另外,在功率谱估计中也要遇到窗函数加权问题。

二、核心程序

.......................................
F=fft2(f);
fd=abs(fftshift(F));
fdf=ifft2(fd);%对幅度傅里叶反变换
xw=angle(F);
xwf=ifft2(exp(j*xw));
figure;
subplot(2,2,1);
imshow(log(abs(fftshift(F))),[])%显示频谱幅度
title('图像频谱幅度');
subplot(2,2,2);
imshow(angle(fftshift(F)),[])
title('图像相位');
%---------------------------
subplot(2,2,3);
imshow(log(1+abs(fdf)),[]);
title('图像频谱幅度的逆变换');
subplot(2,2,4);
imshow(xwf,[]);
title('图像相位的逆变换');
%-----------------------------------
up34

三、测试结果

 

以上是关于通过二维FFT变换对比加入窗函数之后的图像频谱和相位的主要内容,如果未能解决你的问题,请参考以下文章

FFT频谱分析(补零频谱泄露栅栏效应加窗细化频谱混叠),MatlabC语言代码

p68 对数变换 关于fft2 fftshift 频谱

二维图像频谱中的两点表示什么

虹科教您 | 实时频谱分析仪中如何选择合适的FFT窗函数

如何用matlab求周期函数的频谱?

傅里叶变换,fft,fft energy