Kafka相关

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Kafka相关相关的知识,希望对你有一定的参考价值。

定义
传统定义:Kafka是一个分布式的基于发布/订阅模式的消息队列(MessageQueue),主要应用于大数据实时处理领域。
最新定义:Kafka是 一个开源的 分 布式事件流平台 (Event StreamingPlatform),被数千家公司用于高性能数据管道、流分析、数据集成和关键任务应用。
发布/订阅:消息的发布者不会将消息直接发送给特定的订阅者,而是将发布的消息分为不同的类别,订阅者只接收感兴趣的消息。

消息队列
常见的消息队列:Kafka、ActiveMQ 、RabbitMQ 、RocketMQ 等。
大数据场景主要采用 Kafka 作为消息队列。
传统消息队列的应用场景
缓存/消峰、解耦和异步通信。
缓冲/消峰:有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况。
解耦:允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。
异步通信:允许用户把一个消息放入队列,但并不立即处理它,然后在需要的时候再去处理它们。

```消息队列的两种模式```
点对点:消费者主动拉取数据,消息收到后清除消息
发布/订阅:
• 可以有多个topic主题
• 消费者消费数据之后,不删除数据
• 每个消费者相互独立,都可以消费到数据
基础架构
  • Producer:消息生产者,就是向 Kafka broker 发消息的客户端。
  • Consumer:消息消费者,向 Kafka broker 取消息的客户端。
  • Consumer Group(CG):消费者组,由多个 consumer 组成。消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费;消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。
  • Broker:一台 Kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个broker 可以容纳多个 topic。
  • Topic:可以理解为一个队列,生产者和消费者面向的都是一个 topic。
  • Partition:为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分为多个 partition,每个 partition 是一个有序的队列。
  • Replica:副本。一个 topic 的每个分区都有若干个副本,一个 Leader 和若干个Follower。
  • Leader:每个分区多个副本的“主”,生产者发送数据的对象,以及消费者消费数据的对象都是 Leader。
  • Follower:每个分区多个副本中的“从”,实时从 Leader 中同步数据,保持和Leader 数据的同步。Leader 发生故障时,某个 Follower 会成为新的 Leader。


Kafka生产者

生产者消息发送流程

原理:在消息发送的过程中,涉及到了两个线程——main 线程和 Sender 线程。在 main 线程中创建了一个双端队列 RecordAccumulator。main 线程将消息发送给 RecordAccumulator, Sender 线程不断从 RecordAccumulator 中拉取消息发送到 Kafka Broker。

生产者分区的好处
  • 便于合理使用存储资源,每个Partition在一个Broker上存储,可以把海量的数据按照分区切割成一块一块数据存储在多台Broker上。合理控制分区的任务,可以实现负载均衡的效果。
  • 提高并行度,生产者可以以分区为单位发送数据;消费者可以以分区为单位进行消费数据。


生产者如何提高吞吐量
  • batch.size:批次大小,默认16k
  • ​linger.ms​​:等待时间,修改为5-100ms
  • compression.type:压缩snappy
  • RecordAccumulator:缓冲区大小,修改为64m


ACK应答级别
  • acks=0,生产者发送过来数据就不管了,可靠性差,效率高;
  • acks=1,生产者发送过来数据Leader应答,可靠性中等,效率中等;
  • acks=-1,生产者发送过来数据Leader和ISR队列里面所有Follwer应答,可靠性高,效率低;
  • 在生产环境中,acks=0很少使用;acks=1,一般用于传输普通日志,允许丢个别数据;acks=-1,一般用于传输和钱相关的数据, 对可靠性要求比较高的场景。


数据传递语义
  • 至少一次(At Least Once)= ACK级别设置为-1 + 分区副本大于等于2 + ISR里应答的最小副本数量大于等于
  • 最多一次(At Most Once)= ACK级别设置为0
  • At Least Once可以保证数据不丢失,但是不能保证数据不重复;
  • At Most Once可以保证数据不重复,但是不能保证数据不丢失。
  • 精确一次(Exactly Once):对于一些非常重要的信息,比如和钱相关的数据,要求数据既不能重复也不丢失。
  • Kafka 0.11版本以后,引入了一项重大特性:幂等性和事务。


幂等性原理
  • 幂等性就是指Producer不论向Broker发送多少次重复数据,Broker端都只会持久化一条,保证了不重复。
  • 精确一次(Exactly Once) = 幂等性 + 至少一次( ack=-1 + 分区副本数>=2 + ISR最小副本数量>=2) 。

相同主键的消息提交时,Broker只会持久化一条。其中PID是Kafka每次重启都会分配一个新的;Partition 表示分区号;Sequence Number是单调自增的。 所以幂等性只能保证的是在单分区单会话内不重复。

如何使用幂等性
  • 开启参数 enable.idempotence 默认为 true,false 关闭。


kafka副本
  • Kafka 副本作用:提高数据可靠性。
  • Kafka 默认副本 1 个,生产环境一般配置为 2 个,保证数据可靠性;太多副本会增加磁盘存储空间,增加网络上数据传输,降低效率。
  • Kafka 中副本分为:Leader 和 Follower。Kafka 生产者只会把数据发往 Leader,然后 Follower 找 Leader 进行同步数据。
  • Kafka 分区中的所有副本统称为 AR(Assigned Repllicas)。
  • AR = ISR + OSR
  • ISR,表示和 Leader 保持同步的 Follower 集合。如果 Follower 长时间未向 Leader 发送通信请求或同步数据,则该 Follower 将被踢出 ISR。该时间阈值由 replica.lag.time.max.ms参数设定,默认 30s。Leader 发生故障之后,就会从 ISR 中选举新的 Leader。
  • OSR,表示 Follower 与 Leader 副本同步时,延迟过多的副本。


Leader的选举流程
  • Kafka 集群中有一个 broker 的 Controller 会被选举为 Controller Leader,负责管理集群broker 的上下线,所有 topic 的分区副本分配和 Leader 选举等工作。Controller 的信息同步工作是依赖于 Zookeeper 的。
  • 选举规则:在isr中存活为前提,按照AR中排在前面的优先。例如ar[1,0,2], isr [1,0,2],那么leader就会按照1,0,2的顺序轮询
  1. broker启动后在zk中注册
  2. controller谁先注册,谁说了算
  3. 由选举出来的Controller监听brokers节点变化
  4. Controller决定Leader选举
  5. Controller将节点信息上传到ZK
  6. 其他contorller从zk同步相关信息
  7. 假设Broker1中Leader挂了
  8. Controller监听到节点变化
  9. 获取ISR
  10. 更新Leader及ISR




















以上是关于Kafka相关的主要内容,如果未能解决你的问题,请参考以下文章

kafka安装和使用

学习使用哪个 Kafka API 以将传统集成系统转换为 Apache Kafka

Kafka 与传统消息系统之间的三个关键区别

AIX 7.1 crontab中的Kafka Producer收到JAVA错误:错误的主要版本

Kafka笔记-3-kafka配置文件介绍

分布式文件系统和企业级应用——zookeeper集群和kafka的相关概念就部署