小林coding阅读笔记:操作系统篇之内存管理基础,虚拟内存分段分页

Posted adventure.Li

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了小林coding阅读笔记:操作系统篇之内存管理基础,虚拟内存分段分页相关的知识,希望对你有一定的参考价值。

前言

  1. 参考/导流:
    小林coding - 4.1为什么要有虚拟内存?
  2. 学习意义
  • 理解操作系统内存管理的方式
  • 理解局部性原理的设计映射思想
  1. 相关说明
    该篇博文是个人阅读的重要梳理,仅做简单参考,详细请阅读小林coding的原文!

内存管理基础(虚拟内存、分段分页)

一、虚拟内存

基础背景

对于单片机CPU来说,可以直接将程序烧录至内存,CPU直接读取物理地址即可进行控制程序。而另外的程序来使用该物理地址空间进行执行,那么将会把原来的程序覆盖掉,不能同时运行两个程序。而对于操作系统,加了一个对内存管理的中间层,OS则需要向下进行管理,对下进行封装抽象(此时,采用映射的方式),引入了 虚拟地址空间的概念。程序直接操作 OS 提供的 虚拟地址空间,而非绝对的物理地址空间,然后OS再 进行协调,映射至物理地址空间。

基本原理

操作系统提供一种机制,将不同进程的虚拟地址和不同内存的物理地址映射起来。

如果程序要访问虚拟地址的时候,由操作系统转换成不同的物理地址,这样不同的进程运行的时候,写入的是不同的物理地址,这样就不会冲突了。

于是,这里就引出了两种地址的概念:

  • 我们程序所使用的内存地址叫做虚拟内存地址Virtual Memory Address
  • 实际存在硬件里面的空间地址物理内存地址Physical Memory Address

注:对于 物理和逻辑(虚拟)的概念是计算机中较为重要的概念,数据结构中的物理结构(存储)——【顺序结构、链式结构、散列、索引】。顺序结构的连续地址(此处应该值的是 虚拟地址?)

操作系统引入了虚拟内存,进程持有的虚拟地址会通过 **CPU 芯片中的内存管理单元(MMU)**的映射关系,来转换变成物理地址,然后再通过物理地址访问内存,如下图所示:

二、内存分段

基本概念

程序是由若干个逻辑分段组成的,如可由代码分段、数据分段、栈段、堆段组成。不同的段是有不同的属性的,所以就用分段(Segmentation)的形式把这些段分离出来。

分段机制下的虚拟地址由两部分组成,段选择因子段内偏移量

段选择因子和段内偏移量:

  • 段选择子就保存在段寄存器里面。段选择子里面最重要的是段号,用作段表的索引。段表里面保存的是这个段的基地址、段的界限和特权等级等。
  • 虚拟地址中的段内偏移量应该位于 0 和段界限之间,如果段内偏移量是合法的,就将段基地址加上段内偏移量得到物理内存地址。

在上面,知道了虚拟地址是通过**段表(中间层,规则定义)**与物理地址进行映射的。

分段机制会把程序的虚拟地址分成 4 个段,每个段在段表中有一个项,在这一项找到段的基地址,再加上偏移量,于是就能找到物理内存中的地址。

不足之处

  • 内存碎片
  • 内存交换效率低

内存碎片

对于内存碎片,由于分段分配的物理地址空间是不连续的,可能存在内存碎片、利用不合理的情况。

内存分段管理可以做到段根据实际需求分配内存,所以有多少需求就分配多大的段,所以不会出现内部内存碎片

但是由于每个段的长度不固定,所以多个段未必能恰好使用所有的内存空间,会产生了多个不连续的小物理内存,导致新的程序无法被装载,所以会出现外部内存碎片的问题。

所以分段是针对的用户程序、分配的内部不会出现碎片,而对于物理地址空间则会产生碎片。

解决「外部内存碎片」的问题就是内存交换

可以把音乐程序占用的那 256MB 内存写到硬盘上,然后再从硬盘上读回来到内存里。不过再读回的时候,我们不能装载回原来的位置,而是紧紧跟着那已经被占用了的 512MB 内存后面【此时应该需要先查找段表判断,再进行写入,不过这个计算速度是比较快的,关键就在于 对换分区和内存之间的距离较远,耗时较大】。这样就能空缺出连续的 256MB 空间,于是新的 200MB 程序就可以装载进来。

这个内存交换空间,在 Linux 系统里,也就是我们常看到的 Swap 空间,这块空间是从硬盘划分出来的,用于内存与硬盘的空间交换。

内存交换效率低

对于多进程的系统来说,用分段的方式,外部内存碎片是很容易产生的,产生了外部内存碎片,那不得不重新 Swap 内存区域,这个过程会产生性能瓶颈。

因为硬盘的访问速度要比内存慢太多了,每一次内存交换,我们都需要把一大段连续的内存数据写到硬盘上。

所以,如果内存交换的时候,交换的是一个占内存空间很大的程序,这样整个机器都会显得卡顿。

为了解决内存分段的「外部内存碎片和内存交换效率低」的问题,就出现了内存分页。

三、内存分页

基本概念

分段的好处就是能产生连续的内存空间【对应程序来说】,但是会出现「外部内存碎片和内存交换的空间太大」的问题。

要解决这些问题,那么就要想出能少出现一些内存碎片的办法。另外,当需要进行内存交换的时候,让需要交换写入或者从磁盘装载的数据更少一点,这样就可以解决问题了。这个办法,也就是内存分页Paging)。

分页是把整个虚拟和物理内存空间切成一段段固定尺寸的大小。这样一个连续并且尺寸固定的内存空间,我们叫Page)。在 Linux 下,每一页的大小为 4KB

和分段类似,为了进行虚拟地址和物理地址的映射,引入了 页表。页表是存储在内存里的,内存管理单元MMU)就做将虚拟内存地址转换成物理地址的工作。

而当进程访问的虚拟地址在页表中查不到时【对比分段时的内存不足,则直接对换,未通过缺页这样细粒度、可控地去处理 对换】,系统会产生一个缺页异常,进入系统内核空间分配物理内存、更新进程页表,最后再返回用户空间,恢复进程的运行。

内部碎片

内存分页由于内存空间都是预先划分好的,也就不会像内存分段一样,在段与段之间会产生间隙非常小的内存,这正是分段会产生外部内存碎片的原因。而采用了分页,页与页之间是紧密排列的,所以不会有外部碎片。

但是,因为内存分页机制分配内存的最小单位是一页,即使程序不足一页大小,我们最少只能分配一个页,所以页内会出现内存浪费,所以针对内存分页机制会有内部内存碎片的现象。

如果内存空间不够,操作系统会把其他正在运行的进程中的「最近没被使用」【相应的页面置换策略】的内存页面给释放掉,也就是暂时写在硬盘上,称为换出。一旦需要的时候,再加载进来,称为换入。所以,一次性写入磁盘的也只有少数的一个页或者几个页【而分段则—,这就是分页的高明之处】,不会花太多时间,内存交换的效率就相对比较高。

利用局部性原理,分页的方式使得我们在加载程序的时候,不再需要一次性都把程序加载到物理内存中。我们完全可以在进行虚拟内存和物理内存的页之间的映射之后,并不真的把页加载到物理内存里,而是只有在程序运行中,需要用到对应虚拟内存页里面的指令和数据时,再加载到物理内存里面去。

在分页机制下,虚拟地址分为两部分,页号页内偏移。页号作为页表的索引,页表包含物理页每页所在物理内存的基地址,这个基地址与页内偏移的组合就形成了物理内存地址,见下图。

简单分页的问题

在 32 位的环境下,虚拟地址空间共有 4GB,假设一个页的大小是 4KB(2^12),那么就需要大约 100 万 (2^20) 个页,每个「页表项」需要 **4 个字节【4*8bit=32】**大小来存储,那么整个 4GB 空间的映射就需要有 4MB 的内存来存储页表。

这 4MB 大小的页表【页表存储与内存,MMU负责映射】,看起来也不是很大。但是要知道每个进程都是有自己的虚拟地址空间的,也就说都有自己的页表。而进程一般来说 上百个 ,则需≥100*4M=400MB

多级分页

在前面我们知道了,对于单页表的实现方式,在 32 位和页大小 4KB 的环境下,一个进程的页表需要装下 100 多万个「页表项」,并且每个页表项是占用 4 字节大小的,于是相当于每个页表需占用 4MB 大小的空间。

我们把这个 100 多万个「页表项」的单级页表再分页,将页表(一级页表)分为 1024 个页表(二级页表),每个表(二级页表)中包含 1024 个「页表项」,形成二级分页。如下图所示:

如果 4GB 的虚拟地址全部都映射到了物理内存上的话,二级分页占用空间确实是更大了,但是,我们往往不会为一个进程分配那么多内存。(4KB【一级页表】+4MKB【二级页表】)

但根据局部原理,每个进程都有 4GB 的虚拟地址空间,而显然对于大多数程序来说,其使用到的空间远未达到 4GB,因为会存在部分对应的页表项都是空的,根本没有分配,对于已分配的页表项,如果存在最近一定时间未访问的页表,在物理内存紧张的情况下,操作系统会将页面换出到硬盘,也就是说不会占用物理内存。

如果使用了二级分页,一级页表就可以覆盖整个 4GB 虚拟地址空间,但如果某个一级页表的页表项没有被用到,也就不需要创建这个页表项对应的二级页表了,即可以在需要时才创建二级页表。做个简单的计算,假设只有 20% 的二级页表项被用到了,那么页表占用的内存空间就只有 4KB(一级页表) + 20% * 4MB(二级页表)= 0.804MB,这对比单级页表的 4MB 是不是一个巨大的节约?

注:(一级页表,此时一级页表记录二级的地址了,所以从4MB → 4KB了,一级页表必须用到,对于一级页表中的二级地址都可以去访问,但实际上 由于局部原理,表面上是可以访问所有,实际上一次性根本用不完,假设只能用到20%,即 800M虚拟地址空间。所以就节省下来80%*4M-4kB的额外开销,另外,由于两次访问页表,时间上的开销会略微增加,时间换空间?)

思考为什么不能直接动态加载一级页表呢?,20%一级,则是 0.8MB,因为这样表明上并不是能访问所有?? 对于二级页表,一级页表的地址是可以访问所有的。?

我们从页表的性质来看,保存在内存中的页表承担的职责是将虚拟地址翻译成物理地址。假如虚拟地址在页表中找不到对应的页表项,计算机系统就不能工作了。所以页表一定要覆盖全部虚拟地址空间,不分级的页表就需要有 100 多万个页表项来映射,而二级分页则只需要 1024 个页表项(此时一级页表覆盖到了全部虚拟地址空间,二级页表在需要时创建)

对于 64 位的系统,两级分页肯定不够了,就变成了四级目录,分别是:

  • 全局页目录项 PGD(Page Global Directory);
  • 上层页目录项 PUD(Page Upper Directory);
  • 中间页目录项 PMD(Page Middle Directory);
  • 页表项 PTE(Page Table Entry);

TLB

多级页表虽然解决了空间上的问题,但是虚拟地址到物理地址的转换就多了几道转换的工序,这显然就降低了这俩地址转换的速度,也就是带来了时间上的开销。

程序是有局部性的,即在一段时间内,整个程序的执行仅限于程序中的某一部分。相应地,执行所访问的存储空间也局限于某个内存区域【有点二八定律,缓存思路的理论来源】

我们就可以利用这一特性,把最常访问的几个页表项存储到访问速度更快的硬件,于是计算机科学家们,就在 CPU 芯片中,加入了一个专门存放程序最常访问的页表项的 Cache,这个 Cache 就是 TLB(Translation Lookaside Buffer) ,通常称为页表缓存、转址旁路缓存、快表等。

四、段页式管理

段页式虚拟存储系统结合了分段式和分页式的全部优点,具体包括:

1)便于用户模块化程序设计,因为程序是以段为单位分割的,每个段内是连续的,但是段间是可以不连续 ;

2)能减少存储空间的浪费 ;

3)有利于实现程序的动态连接 ;

4)有利于程序的共享 。

段页式内存管理实现的方式:

  • 先将程序划分为多个有逻辑意义的段,也就是前面提到的分段机制;
  • 接着再把每个段划分为多个页,也就是对分段划分出来的连续空间,再划分固定大小的页;

这样,地址结构就由段号、段内页号和页内位移三部分组成。

用于段页式地址变换的数据结构是每一个程序一张段表,每个段又建立一张页表,段表中的地址是页表的起始地址,而页表中的地址则为某页的物理页号,如图所示:

段页式地址变换中要得到物理地址须经过三次内存访问:

  • 第一次访问段表,得到页表起始地址;
  • 第二次访问页表,得到物理页号;
  • 第三次将物理页号与页内位移组合,得到物理地址。

可用软、硬件相结合的方法实现段页式地址变换,这样虽然增加了硬件成本和系统开销,但提高了内存的利用率。

五、Linux内存布局

Intel处理的发展

早期 Intel 的处理器从 80286 开始使用的是段式内存管理。但是很快发现,光有段式内存管理而没有页式内存管理是不够的,这会使它的 X86 系列会失去市场的竞争力。因此,在不久以后的 80386 中就实现了页式内存管理。也就是说,80386 除了完成并完善从 80286 开始的段式内存管理的同时还实现了页式内存管理

但是这个 80386 的页式内存管理设计时,没有绕开段式内存管理,而是建立在段式内存管理的基础上,这就意味着,页式内存管理的作用是在由段式内存管理所映射而成的地址上再加上一层地址映射。

由于此时由段式内存管理映射而成的地址不再是“物理地址”了,Intel 就称之为“线性地址”(也称虚拟地址)。于是,段式内存管理先将逻辑地址映射成线性地址,然后再由页式内存管理将线性地址映射成物理地址。

这里说明下逻辑地址和线性地址:

  • 程序所使用的地址,通常是没被段式内存管理映射的地址,称为逻辑地址
  • 通过段式内存管理映射的地址,称为线性地址,也叫虚拟地址;

逻辑地址是「段式内存管理」转换前的地址,线性地址则是「页式内存管理」转换前的地址。

Linux的内存

Linux 内存主要采用的是页式内存管理,但同时也不可避免地涉及了段机制

这主要是上面 Intel 处理器发展历史导致的,因为 Intel X86 CPU 一律对程序中使用的地址先进行段式映射,然后才能进行页式映射。既然 CPU 的硬件结构是这样,Linux 内核也只好服从 Intel 的选择。

但是事实上,Linux 内核所采取的办法是使段式映射的过程实际上不起什么作用。也就是说,“上有政策,下有对策”,若惹不起就躲着走。

Linux 系统中的每个段都是从 0 地址开始的整个 4GB 虚拟空间(32 位环境下),也就是所有的段的起始地址都是一样的。这意味着,Linux 系统中的代码,包括操作系统本身的代码和应用程序代码,所面对的地址空间都是线性地址空间(虚拟地址),这种做法相当于屏蔽了处理器中的逻辑地址概念,段只被用于访问控制和内存保护。

Linux的虚拟地址空间

在 Linux 操作系统中,虚拟地址空间的内部又被分为内核空间和用户空间两部分,不同位数的系统,地址空间的范围也不同。比如最常见的 32 位和 64 位系统,如下所示:

虽然每个进程都各自有独立的虚拟内存,但是每个虚拟内存中的内核地址,其实关联的都是相同的物理内存。这样,进程切换到内核态后,就可以很方便地访问内核空间内存。

接下来,进一步了解虚拟空间的划分情况,用户空间和内核空间划分的方式是不同的,内核空间的分布情况就不多说了。

我们看看用户空间分布的情况,以 32 位系统为例,我画了一张图来表示它们的关系:

通过这张图你可以看到,用户空间内存,从低到高分别是 6 种不同的内存段:

  • 程序文件段(.text),包括二进制可执行代码;
  • 已初始化数据段(.data),包括静态常量;
  • 未初始化数据段(.bss),包括未初始化的静态变量;
  • 堆段,包括动态分配的内存,从低地址开始向上增长;
  • 文件映射段,包括动态库、共享内存等,从低地址开始向上增长(跟硬件和内核版本有关 (opens new window));
  • 栈段,包括局部变量和函数调用的上下文等。栈的大小是固定的,一般是 8 MB。当然系统也提供了参数,以便我们自定义大小;

上图中的内存布局可以看到,程序文件段(.text)下面还有一段内存空间的(灰色部分),这一块区域是「保留区」,之所以要有保留区这是因为在大多数的系统里,我们认为比较小数值的地址不是一个合法地址,例如,我们通常在 C 的代码里会将无效的指针赋值为 NULL。因此,这里会出现一段不可访问的内存保留区,防止程序因为出现 bug,导致读或写了一些小内存地址的数据,而使得程序跑飞。

在这 7 个内存段中,堆和文件映射段的内存是动态分配的。比如说,使用 C 标准库的 malloc() 或者 mmap() ,就可以分别在堆和文件映射段动态分配内存。

以上是关于小林coding阅读笔记:操作系统篇之内存管理基础,虚拟内存分段分页的主要内容,如果未能解决你的问题,请参考以下文章

小林coding阅读笔记:操作系统篇之内存分配与回收

小林coding阅读笔记:操作系统篇之内存分配与回收

小林Coding阅读笔记:操作系统篇之硬件结构,伪共享问题及CPU的任务执行

小林Coding阅读笔记:操作系统篇之硬件结构,CPU Cache一致性问题

小林coding阅读笔记:操作系统篇之内核设计

小林coding阅读笔记:操作系统篇之内核设计