Gilbert Strang 《Introduction to Linear Algebra》 chap1 Introduction to Vectors 笔记

Posted 临风而眠

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Gilbert Strang 《Introduction to Linear Algebra》 chap1 Introduction to Vectors 笔记相关的知识,希望对你有一定的参考价值。

Gilbert Strang Introduction to Linear Algebra chap1 Introduction to Vectors 笔记

会持续更新

Introduction to Linear Algebra, Fifth Edition (2016)

Chapter 1 starts with vectors and dot products. If the class has met them before, focus quickly on linear combinations. Section 1.3 provides three independent vectors whose combinations fill all of 3-dimensional space, and three dependent vectors in a plane.

文章目录

1.1 Vectors and Linear Combinations

A brief summary

Every section opens with a brief summary to explain its contents. When you read a new section, and when you revisit a section to review and organize it in your mind, those lines are a quick guide and an aid to memory.

1 3 v + 5 w  is a typical    linear   combination   c v + d w  of the vectors  v  and  w 1\\quad 3 \\boldsymbolv+5 \\boldsymbolw\\text is a typical \\textbf linear combination c\\boldsymbolv+d \\boldsymbolw \\text of the vectors \\boldsymbolv \\text and \\boldsymbolw 13v+5w is a typical  linear combination cv+dw of the vectors v and w

2 For  v = [ 1 1 ]  and  w = [ 2 3 ] that combination is  3 [ 1 1 ] + 5 [ 2 3 ] = [ 3 + 10 3 + 15 ] = [ 13 18 ] . 2\\quad \\textFor \\boldsymbolv=\\left[\\beginarrayl1 \\\\ 1\\endarray\\right] \\text and \\boldsymbolw=\\left[\\beginarrayl2 \\\\ 3\\endarray\\right] \\textthat combination is 3\\left[\\beginarrayl1 \\\\ 1\\endarray\\right]+5\\left[\\beginarrayl2 \\\\ 3\\endarray\\right]=\\left[\\beginarrayl3+10 \\\\ 3+15\\endarray\\right]=\\left[\\beginarrayl13 \\\\ 18\\endarray\\right]. 2For v=[11] and w=[23]that combination is 3[11]+5[23]=[3+103+15]=[1318].

3 The vector [ 2 3 ] = [ 2 0 ] + [ 0 3 ] goes across to  x = 2  and up to  y = 3  in the  x y  plane . 3\\quad \\textThe vector \\left[\\beginarrayl2 \\\\ 3\\endarray\\right]=\\left[\\beginarrayl2 \\\\ 0\\endarray\\right]+\\left[\\beginarrayl0 \\\\ 3\\endarray\\right] \\textgoes across to x=2 \\text and up to y=3 \\text in the x y \\text plane. 3The vector[23]=[20]+[03]goes across to x=2 and up to y=3 in the xy plane.

4 The combinations  c [ 1 1 ] + d [ 2 3 ] fill the whole  x y  plane . They produce every [ x y ] . 4\\quad \\textThe combinations c\\left[\\beginarrayl1 \\\\ 1\\endarray\\right]+d\\left[\\beginarrayl2 \\\\ 3\\endarray\\right] \\textfill the whole x y \\text plane. \\textThey produce every \\left[\\beginarraylx \\\\ y\\endarray\\right]. 4The combinations c[11]+d[23]fill the whole xy plane.They produce every[xy].

5 The combinations  c [ 1 1 1 ] + d [ 2 3 4 ] fill a plane in  x y z  space  . Same plane for [ 1 1 1 ] , [ 3 4 5 ] . 5\\quad \\textThe combinations c\\left[\\beginarrayl1 \\\\ 1 \\\\ 1\\endarray\\right]+d\\left[\\beginarrayl2 \\\\ 3 \\\\ 4\\endarray\\right] \\textfill a plane in x y z \\text space . \\textSame plane for \\left[\\beginarrayl1 \\\\ 1 \\\\ 1\\endarray\\right],\\left[\\beginarrayl3 \\\\ 4 \\\\ 5\\endarray\\right]. 5The combinations c 111 +d 234 fill a plane in xyz space .Same plane for 111 , 345 .

6 But c + 2 d = 1 c + 3 d = 0 c + 4 d = 0 has no solution because its right side [ 1 0 0 ] is not on that plane. 6\\quad \\textBut \\left\\\\beginarraylc+2 d=1 \\\\ c+3 d=0 \\\\ c+4 d=0\\endarray\\right. \\texthas no solution because its right side \\left[\\beginarrayl1 \\\\ 0 \\\\ 0\\endarray\\right] \\textis not on that plane. 6But c+2d=1c+3d=0c+4d=0has no solution because its right side 100 is not on that plane.

向量的写法和基本概念

  • We have two separate numbers v 1 v_1 v1 and v 2 v_2 v2. That pair produces a t w o − d i m e n s i o n a l v e c t o r v \\boldsymboltwo-dimensional \\quad vector \\quad \\boldsymbolv twodimensionalvectorv :
    C o l u m n v e c t o r v = [ v 1 v 2 ] v 1 =  first component of  v v 2 =  second component of  v \\boldsymbol\\quad Column\\quad vector \\quad \\boldsymbolv=\\left[\\beginarraycv_1 \\\\ v_2\\endarray\\right] \\quad \\beginarraylv_1=\\text first component of \\boldsymbolv \\\\ v_2=\\text second component of \\boldsymbolv\\endarray Columnvectorv=[v1v2]v1= first component of vv2= second component of v