Applied Nonparametric Statistics-lec8

Posted pxy7896

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Applied Nonparametric Statistics-lec8相关的知识,希望对你有一定的参考价值。

Ref:https://onlinecourses.science.psu.edu/stat464/print/book/export/html/11


additive model

value = typical value + row effect + column effect + residual

predicate value = typical value + row effect + column effect

其中value是我们关注的值,typical value是overall median,row effect是block effect,column effect是treatment effect

下面用例题来展示:

问题:对于面包中烟酸(维生素B3)的含量,三个实验室(abc)的测量方法可能不同。烟酸的含量分为三档:

no niacin、2mg/100gm、4mg/100gm。我们把一些样本送到三个实验室做检测,希望知道:划分档次时,是否

基于烟酸的实际含量。

输入:niacin_r.txt(参见网页)

步骤一:

Plots the mean (or other summary) of the response for two-way combinations of factors, thereby illustrating possible interactions.

data = read.table("niacin_r.txt", header=F, sep=",")
data = as.data.frame(data)
names(data)=c("niacin", "lab", "level")
attach(data)
interaction.plot(lab, level, niacin, fun=median)
detach(data)  

结果如图

因为三条线基本是平行的(没有明显的交叉),所以我们可以继续做。(additive model没有考虑interaction的情况)

现在需要整理一下数据:首先将数据按照lab和level聚集一下

a=aggregate(niacin~lab+level, data=data, median)  

结果是这样的:

> a
  lab level niacin
1   a     0     36
2   b     0     38
3   c     0     39
4   a     2     53
5   b     2     56
6   c     2     55
7   a     4     68
8   b     4     76
9   c     4     73  

然后将它变成矩阵,每一行表示block(这里是level水平,0,2,4),每一列表示treat(这里是lab,abc)

> m=matrix(a[,3], nrow=3, ncol=3, byrow=T)
> m
     [,1] [,2] [,3]
[1,]   36   38   39
[2,]   53   56   55
[3,]   68   76   73  

 步骤二:median polish

> medpolish(m)
1: 7
Final: 7

Median Polish Results (Dataset: "m")

Overall: 55

Row Effects:
[1] -17   0  18

Column Effects:
[1] -2  1  0

Residuals:
     [,1] [,2] [,3]
[1,]    0   -1    1
[2,]    0    0    0
[3,]   -3    2    0  

这样我们已经得到了完整的additive model,其中typical value即overall,也就是55。

注意:medpolish实际是将前面的结果做了一个拆分,比如

m[1,1] = 36 = overall + column_effect[1] + row_effect[1] + residuals[1, 1] = 55 + (-17) + (-2) + 0

为了确定模型的好坏,我们计算统计量R*。如上例,TV是55,计算出R*约为0.9346,也就是说,考虑了lab和level的这种

additive model,可以解释93%的烟酸水平评定结果。

(the additive model of the labs and levels of niacin explain about 93% of the variation in the measured niacin levels.)


如果三条线有交叉,就要对每个block(每行)分别进行考虑,使用kruskal test。如果overall error rate是0.09,3个block的话,

那么每个的α值就是0.03(p值小于它就拒绝原假设)。

判断interaction的统计量可以用上面得到的Residuals矩阵,使用Q这个统计量,使用自由度为(b-1)×(k-1)的卡方分布决定p值


Dichotomous Data (Cochran\'s Tests)

b个block,k个treatment,实际数值只有两种,即0和1

前提:blocks是随机选择的;结果变量是二值化的。

假设:

H0:treatments are equally effective
H1:difference in effectiveness among treatments.

 

以上是关于Applied Nonparametric Statistics-lec8的主要内容,如果未能解决你的问题,请参考以下文章

Applied Nonparametric Statistics-lec2

Applied Nonparametric Statistics-lec6

Applied Nonparametric Statistics-lec3

Applied Nonparametric Statistics-lec4

Applied Nonparametric Statistics-lec9

STA 442 Methods of Applied Statistics