poweroftest怎么算例题

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了poweroftest怎么算例题相关的知识,希望对你有一定的参考价值。

小概率原理

假设检验的基本思想是概率性质的反证法,基于统计学中广泛采用的小概率原理, 该原理认为"小概率事件在一次试验中几乎是不可能发生的"。通常认为在一次试验中, 发生概率小于 0.05 或者小于 0.01 的事件为小概率事件。

因此,首先假定虚无假设为真,在虚无假设为真的前提下∶

若一次试验中有违反常理或不合理的现象出现,即出现了小概率事件(例如,事件 发生的概率p为 0.03 ),则表明"虚无假设为真"的假定错误,拒绝原来的假设,即拒绝虚无假设;

若一次试验中没有出现不合理现象,即没有出现小概率事件(例如,事件发生的概 率p为 0.13),则认为"虚无假设为真"是正确的,接受原来的假设,即接受虚无假设。
参考技术A poweroftest怎么算例题
power of a test
把握度,检验效能; 检验效能; 检定的功效;

双语例句
1
A criterion to determine the maximum resolving power of a resolving power test chart by using Fourier power spectrum is proposed.
提出傅里叶功率谱法评价分辨率标板极限分辨率值的理论判据。

2
Combustor parameter of all gas-phase iodine laser is studied using the power of HF fundamental laser as a test criterion.
以HF基频激光功率大小作为判断依据,对燃烧驱动全气相碘激光的燃烧室参数进行了考察。
参考技术B Power of Test是一种统计学方法,用于评估某个统计检验的有效性。它可以帮助我们判断检验的可信度,以及在特定情况下,检验所能够检测到的最小差异。例如,假设你正在测试一个新的药物,你可以使用Power of Test来评估你的实验是否具有足够的力量来显示出新药物对患者的影响。 参考技术C 统计检验力(power of test),假设检验中正确地拒绝虚无假设的概率。用1-β来表示,β为假设检验中犯Ⅱ型错误的概率。假如真实差异很小时,某个假设检验仍然能以...

如何计算时间复杂度

如何计算时间复杂度

定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。

当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。

我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。

此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。

“大 O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。

这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。

O(1)

Temp=i;i=j;j=temp;

以 上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时 间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

O(n^2)

2.1. 交换i和j的内容
sum=0; (一次)
for(i=1;i<=n;i++) (n次 )
for(j=1;j<=n;j++) (n^2次 )
sum++; (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)

2.2.
for (i=1;i<n;i++)

y=y+1; ①
for (j=0;j<=(2*n);j++)
x++; ②

解: 语句1的频度是n-1
语句2的频度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
该程序的时间复杂度T(n)=O(n^2).

O(n)

2.3.
a=0;
b=1; ①
for (i=1;i<=n;i++) ②

s=a+b;    ③
b=a;     ④
a=s;     ⑤

解: 语句1的频度:2,
语句2的频度: n,
语句3的频度: n-1,
语句4的频度:n-1,
语句5的频度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).

O(log2n )

2.4.
i=1; ①
while (i<=n)
i=i*2; ②
解: 语句1的频度是1,
设语句2的频度是f(n), 则:2^f(n)<=n;f(n)<=log2n
取最大值f(n)= log2n,
T(n)=O(log2n )

O(n^3)

2.5.
for(i=0;i<n;i++)

for(j=0;j<i;j++)

for(k=0;k<j;k++)
x=x+2;


解: 当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).

我 们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最 坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细 地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。
下面是一些常用的记法:

访问数组中的元素是常数时间操作,或说O(1)操作。一个算法 如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。用strcmp比较两个具有n个字符的串需要O(n)时间 。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对 元素相乘并加到一起,所有元素的个数是n^2。
指数时间算法通常来源于需要 求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的 。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名 的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况, 通常应该用寻找近似最佳结果的算法替代之。
参考技术A

一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n)。

因此,算法的时间复杂度记做:T(n)=O(f(n))。

随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。

在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))。

时间复杂度的概念:

时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数)

比如:一般总运算次数表达式类似于这样:

a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f

a ! =0时,时间复杂度就是O(2^n);

a=0,b<>0 =>O(n^3);

a,b=0,c<>0 =>O(n^2)依此类推

参考技术B 一个算法是解决某个问题的,比如n条数据排序问题,那么对于这个问题“n”就是它的问题规模
那么解决这个问题的算法的代价一定是n的函数,记为T(n)
为了比较不同算法之间的优劣,必须有一种方法将计算代价的函数进行变换,所以提出一种
概念叫做“复杂度”(好像是这么个意思,教材上的那个阴文单词背不出了)

以上是关于poweroftest怎么算例题的主要内容,如果未能解决你的问题,请参考以下文章

计算时间复杂度例题

计算时间复杂度例题

条件数cond怎么求

前缀和及例题

标准差怎么计算 标准差的计算方法

JS 乘法运算出现了浮点,该怎么解决