IEEE802.11 学习笔记
Posted Will.Guo
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了IEEE802.11 学习笔记相关的知识,希望对你有一定的参考价值。
一、概论
1.1.简介
IEEE802家族是由一系列局域网络(Local Area Network,LAN)技术规格所组成,802.11属于其中一员。
载波检测多重访问/碰撞检测(Carrier Sense Multiple Access network with Collision Detection,简称CSMA/CD)规格,与(通常误称的)Ethernet有关,802.5则是Token Ring
规格。此外,802协议堆叠还包括其他成员。802.2所规范的链路层(link layer),称为逻辑链路控制层(Logical Link Control,简称LLC),可供所有底层局域网络技术所使用。802网络管理
功能规范于802.1。而802.1的范围涵盖桥接(802.1D)以及虚拟局域网络(802.1Q)。
802.11基本规格涵盖了802.11 MAC 以及两种物理层(physical layer):一是跳频展频(frequency-hopping spread-spectrum,简称FHSS)物理层,另一是直接序列展频(direct-sequence spread-spectrum,简称DSSS)物理层。802.11a所规范的物理层,主要是以正交分频多工(orthogonal frequency division multiplexing,简称OFDM)技术为基础.
802.11将PHY进一步划分为两个组成元件:一是物理层收敛程序(Physical Layer ConvergenceProcedure,简称PLCP),负责将MAC帧对映到传输介质;另一是实际搭配介质Physical Medium Dependent,简称PMD),负责传送这些帧。PLCP横跨MAC与物理层,如图2-2所示。在802.11网络中,PLCP将帧传至空中之前,会在其中加入一些栏位。
1.2.相关术语
1.2.1 802.11网络包含四种主要实体原件,
<1>工作站(Station):具有无线网络接入功能的电子设备(笔记本,手持设备等).
<2>基站(Access Point):802.11网络所使用的帧必须经过转换才能被传到其它不同类型的网络,具有无线至有线桥接功能的设备称为基站(Access Point,AP).此外基站还有其它功能.
<3>无线介质(Wireless Medium):802.11标准以无线介质(Wireless medium)在工作站之间传递帧.其所定义的物理层不只一种.
<4>传输系统(Distribution System):传输系统是基站间转送帧的骨干网络,通常就称为骨干网络(backbone network)当几部基站串连以覆盖较大区域时,彼此之间必须相互通信,才能够掌握移动式工作站的
行踪。而传输系统(distribution system )属于802.11的逻辑元件,负责将帧(frame)转送至目的地。大多数商用产品,是以桥接引擎(bridging engine)和传输系统介质(distribution system medium)共同组成传输系统.
1.2.2 网络类型
基本服务组合(Basic Service Set简称BSS)是802.1一网络的基本元件(buildingblock),由一组彼此通信的工作站所构成。工作站之间的通信,在某个模糊地带进行,称为基本服务区域(basic service area),此区域受限于所使用无线介质的传播特性.只要位于基本服务区域,工作站就可以跟同一个BSS的其他成员通信。BSS分为两种:独立型与基础型。
1.2.2.1独立型网络
独立式基本服务组合(independent BSS,简称IBSS)。在IBSS 中,工作站彼此可以直接通信,两者问的距离必须在可以直接通信的范围内。最低限度的802.11网络,是由两部工作站所组成的IBSS。通常,IBSS是由少数几部工作站针对特定目的而组成的临时性网络。因为持续时问不长、规模甚小且目的特殊,IBSS有时被称为特设BSS(ad hoc BSS)或特设网络(ad hoc network)。
1.2.2.2基础型网络(Infrastructure BSS)
判断是否为基础型网络,只要看是否有基站参与其中。基站负责基础型网络所有的传输,包括同一服务区域中所有行动节点之间的通信。位于基础型基本服务组合的移动式工作站,如有必要
跟其他移动式工作站通信,必须经过两个步骤。首先,由启动对话的工作站将帧传递给基站。其次,由基站将此帧转送至目的地。既然所有通信都必须通过基站,基础型网络所对应的基本服务区域就相当于基站的传送范围。
优点:
<1> 基础型基本服务组合被界定在基站的传输范围。所有移动式工作站都必须位于基站的传输范围之内,不过移动式工作站之间的距离则无限制。允许移动式工作站彼此直接通信虽然可以省下一些频宽,不过代价是相对提高了物理层的复杂度,因为每部工作站都必须维护与服务区域中其他工作站的邻接关系。
<2>基站在基础型网络里的作用是协助工作站节省电力。基站可以记住有哪些工作站处于省电状态,并且为之暂存帧·以电池供电的工作站可以关闭无线收发器,只有在传输或接收来自基站的暂存帧时才会加以开启。
在基础型网络里,工作站必须先与基站建立连接,才能取得网络服务。所谓连接(association),是指移动式工作站加入某个802.11网络的程序。基站只是基于连接要求的内容,判定是否准许该工作站访问网络。对移动式工作站而言,连接必须独一无二:每部移动式工作站同时问只能与一部基站连接.802.11标准并未限制基站可服务的移动式工作站数量。
1.2.2.3 延伸式服务区域
BSS的服务范围,可以涵盖整个小型办公室或家庭,无法服务较广的区域802.11允许我们将几个BSS串连为延伸式服务组合(extended serviceESS),藉此延伸无线网络的覆盖
区域·所谓ESS就是利用骨干网络将几个BSS串联在一起。所有位于同一个ESS的基站将会使用相同的服务组合识别码(set identifier,简称SSID),通常就是使用者所谓的网络「名称」。
802.11并未规范非得使用何种骨干技术,只要求骨干必须提供一组特定的服务功能。图2-5所示的ESS系四个BSS的联集(只要所有基站均隶属同一个ESS)。实际部署时,BSS之问
的重叠程度可能较图2-5为高。在实际生活中,总是希望延伸式服务区域是连续的;不可能要求使用者从BSSl走到BSS2时还要绕道BSS3。
隶属同一个ESS的工作站可以相互通信,即使这些工作站位于不同的基本服务区域,或是在这些基本服务区域中移动。
延伸式服务区域是802.11网络所支持的最高价抽象概念。ESS所属的基站会彼此合作,让外界能够使用单一MAC地址与ESS里其他工作站通信,不论其置身何处。在图2-5中,路由器可使用单一MAC地址传递帧给移动式工作站;由该工作站所连接的基站负责传送帧。路由器无须在意移动式工作站位于何处,而是靠基站传送帧。
1.2.2.4多组BSS所构成的环境:虚拟AP
早期的802.11芯片只能够建立单组BSS(基本服务组合)。而单一AP(基站)只能为使用者提供一个“无线网络”,而且该网络上所有用户的权限,纵非完全相同,也相去不远。
目前的802.11芯片组已经可以使用相同的物理层来建立多组网络。以当前的芯片组而言,每部基站的硬件设备可以建立两组BSS,其中一组可供客户访问,称之为guest另外一组则供内部使用,称之为internal。在此AP当中,各SSID被分别连接至不同的VLAN guest网络会被连接至为不知名或不可信用户所准备的VLAN,而且被置于防火墙外。
每个BSS就像一部自给自足的AP,拥有自己的ESSID、MAC地址。身份认证配置以及加密设置。虚拟基站也可以用来建立具不同安全等级(security level)的平行网络( parallel network)。
1.2.2.5固安网络(Robust Security Network)
2004年6月成为标准的802.11i,规范了一组经改良的安全机制,目的是提供坚固而安全的网络连接。一旦使用802.11i所定义的、经改良的身份认证与私密性协议,就可称之为固安网络连接(robust security network associations,简称RSNAs)。产品可以通过硬件·软件或软硬件兼具的方式支持802.11i,这取决于该设备所使用的架构。不支持此协议的硬件被归类为pre-RSN。
1.2.3传输系统
基站、骨干网络以及传输系统之间的关系如下图所示。基站具备两种不同的界面,分别连接至同一个桥接引擎。图中的箭头代表往返桥接引擎的可能路径。帧将会通过桥接器送至无线网络;任何由桥接器的无线点所送出的帧都会传给所有已连接的工作站。每部已连接的工作站均可传递帧至基站。最后,桥接器的骨干点可以直接与骨干网络互动。在下图中,传输系统是由桥接引擎及有线骨干网络所组成。
传输系统包含了管理连接的方式。一部无线工作站在同一时问只能与一部基站连接,如果某工作站己经与某基站连接,位于同一个ESS的其他基站必须能够得知此工作站。
无线介质本身也可以做为传输系统。此种无线传输系统(wireless distribution system,简称WDS)的配置通常称为「无线桥接器」(wireless bridge)配置,因为它允许网络工程师在链路层连接两个局域网络。无线桥接器可用来快速连接不同的网段,十分适合访问供应商(access provider)使用。
1.3 802.11网络运作方式
1.3.1 网络服务
802.11总共可以提供九种服务。其中三种用来传送数据,其馀六种均属管理作业,目的是让网络能够追踪行动节点以及传递帧。以下说明这九种服务:
<1>传输(Distribution)
只要基础型网络里的移动式工作站传送任何数据,就会使用这项服务。一旦基站接收到帧。就会使用传输服务将帧送至目的地。任何行经基站的通信都会通过传输服务,包括连接至同一部基站的两部移动式工作站彼此通信时。
<2>整合(Integration)
整合服务系由传输系统提供;它让传输系统得以连接至非IEEE 802.11 网络。整合功能将因所使用的传输系统而异,因此除了必须提供的服务,802.11并未加以规范。
<3>连接(Association)
之所以能够将帧传递给移动式工作站,是因为移动式工作站会向基站登记,或与基站建立连接。连接之后,传输系统即可根据这些登录信息判定哪部移动式工作站该使用哪部基站。未连接的工作站不算「在网络上。802.11虽有规范使用这些连接数据的传输系统必须提供哪些功能,但对于如何实现这些功能并未强制规定。如果使用固安网络协议(robust security network protocol),连接之后才能进行身份认证。在身份认证完成之前,基站会将丢弃来自工作站的所有数据。
<4>重新连接(Reassociation)
当移动式工作站在同一个延伸服务区域里的基本服务区域之间移动时,它必须随时评估信号的强度,并在必要时切换所连接的基站。重新连接是由移动式工作站所发起,当信号强度显示最好切换连接对象时便会如此做。基站不可能直接歇始重新连接服务。(有些AP会刻意将工作站剔除,强迫它们进行重新连接程序;未来,随著更优秀网管标准的发展,重新连接会更密切依赖底层的基础建设。)一旦完成重新连接,传输系统会更新工作站的位置纪录,以反映出可通过哪个基站连络上工作站。和连接服务一样,在固安网络中,除非已经成功完成身份认证,否则来自工作站的数据均会被弃置。
<5>解除连接(Disassociation)
要结束现有连接,工作站可以利用解除连接服务。当工作站敌动解除连接服务时,储存于传输系统的连接数据会随即被移除。一旦解除连接,工作站即不再附接在网络上。在工作站的关机程序中,解除连接是个礼貌性的动作。不过MAC在设计时已经考虑到工作站未正式解除连接的情况。
<6>身份认证(Authentication)
实体安全防护在有线局域网络安全解决方案中是不可或缺的一部分。网络的接续 点(attachment point)受到限制,通常只有位于外围访问控制设备(perimeter access control device)之后的办公区才能加以访问·糸网络设备可以通过加锁的 集线槽(locked wiring closet)加以保护,而办公室与隔间的网络插座只在必要时才连接至网络。无线网络无法提供相同层级的实体保护,因此必须依赖额外的身份认证程序,以保证访问网络的使用者已获得授权。身份认证是连接的必要前提,惟有经过身份辨识的使用者才允许使用网络。 工作站与无线网络连接的过程中,可能必须经过多次身份认证。连接之前,工作站会先以本身的MAC地址来跟基站进行基本的身份辨识。此时的身份认证,通常称为802.11身份认证,有别于后续所进行、牢靠而经过加密的使用者身份认证。
<7>解除认证(Deauthentication )
解除认证用来终结一段认证关系。因为获准使用网络之前必须经过身份认证,解除认证的副作用就是终止目前的连接。在固安网络中,解除认证也会清除密钥信息。
<8>机密性(Confidentiality)
802.11初次改版时,机密性( confidentiality)服务原本称为私密性(privacy)服务,而且是由目前已经亳无可信度的有线信号(Wired Equivalent Privacy,简称WEP)协议所提供。除了新的加密机制,802.111另外提供了两种WEP无法解决的关键服务来加强机密性服务,亦即基于使用者的身份认证(user-based authentication)以及密钥管理服务。
<9>MSDU传递
工作站所提供的MSDU(MAC Service Data Unit)递送服务,负责将数据传送给实际的接收端。
A. 传输功率控制(Transmit Power Control,简称 TPC ) TPC是在802.11h所定义的新服务。欧洲标准要求作业于5 GHz频段的工作站必须能够控制电波的传输功率,避免干扰其他同样使用5 GHz频段的用户。传输功率控制也有助于避免干扰其他无线局域网络。传输距离是传输功率的函数;工作站的传输功率愈高,传输距离就愈远,也就愈容易干扰邻近的网络。如果可以将传输功率调到“刚刚好”(just right),就可以避免干扰到邻近的工作站。
B. 动态频率选择(Dynamic Frequency Selection,简称DFS )
某些雷达系统的作业范围位于5 GHz频段。因此,有些管制当局强制要求无线局域网络必须能够检测雷达系统,以及选择未被雷达系统所使用的频率·有些管制当局甚至要求无线局域网
络必须能够均衡使用(uniform use)5 GHz频段,因此网络必须具备重新配置频道(re-map channels)的能力。
1.3.1.1 工作站服务
每部与802.11相容的工作站都必须提供工作站服务,任何宣称符合802.11规格的产品也都必须具备这项功能。移动式工作站与基站的无线界面都会提供工作站服务。工作站提供「帧传
递J(frame delivery)服务让信息得以传递,为了支持此项任务,工作站还必须以「身份认证」服务来建立连接。工作站或许也希望利用「机密性」功能,在信息行经容易遭受侵害的无线链路
时,加以保护。
1.3.1.2传输系统服务
传输系统服务负责将基站连接至传输系统。基站的主要功能是将有线网络所提供的服务延伸至无线网络;方法是对无线端提供「传输」与「整合」服务。传输系统另外一项重要的功能是
管理移动式工作站的连接。为了维护连接数据以及工作站的位置信息,传输系统还提供了「连接」、「重新连接」以及「解除连接」等服务。
1.3.1.3 机密性
除了传输数据的私密性(secrecy),「机密性」服务也提供帧内容的完整性(integrity)。私密性与完整性均仰赖共享式加密密钥(shared cryptographic keying),因此机密性」服务必然仰赖其他服务提供身份认证与密钥管理。
A 身份认证与密钥管理(Authentication and key management,简称 AKM)
「机密性」服务仰赖身份认证与密钥管理的配套来确定使用者的身份和建立加密密钥。身份认证也可以通过其他外部协议完成,比如 802.1X 或者预设共享密钥(pre-shared key)。
B 加密演算法(Cryptographic algorithm)
帧的保护可以通过传统的 WEP 演算法,使用长度 40 或 104 个位元的密钥;或者 TKIP(临时密钥完整性协议);或者 CCMP(计数器模式 CBC-MAC 协议)。
TKIP与CCMP让接收端得以验证传送端的MAC地址,以避免伪装攻击(spoofing attack).来源真实性只能保护单点传播数据( unicast data)。
TKIP与COMP会使用序号计数器(sequence counter)来验证所接收的帧,以防范重演攻击(replay attack)。“太旧”的帧就会被丢弃。
机密性」服务极其仰赖其他外部协议。密钥管理系由802.1X所提供,而802.1X则会搭配EAP来传递认证数据·802.11并未限制使用何种协议,不过最普遍的做法是以EAP提供身份认证,并以RADIUS介接认证服务器。
1.3.1.4 频谱管理服务
频谱管理服务是工作站服务的一部分。这项服务让无线网络得以回应环境,以及动态变更电波的设置值。为了符合电波管制的要求,802.1h定义了两种服务。
<1>传输功率控制(TPC),用来动态调整工作站的传输功率,基站可以利用TPC作业,通知工作站最大容许功率,如果工作站所使用的功率不符合电波管制的要求,也可以拒绝连接。工作站可以利用TPC调整功率,使传输距离“刚刚好”可以连上基站。此外较低的传输功率也有助于延长工作站电池的使用时问,但是效果取决于工作站能够降低多少传输功率。
<2>动态选频(DFS) 目的主要是为了在欧洲地区避免干扰5GHz频段的雷达系统。DFS最重要的功能在于,可以为基站动态配置频道。切换频道之前,工作站均会接到通知。
1.4 移动性的支持
移动性是采用802.11网络的主要动机之所在行进间用手机通话。在工作站移动时传送数据,就好比在移动时用手机通话。在802.11中,基站之间可能出现三种转换:
A.不转换
如果工作站并未离开目前基站的服务范围,就无须转换。
B.BSS转换
工作站持续监控来自所有基站的信号强度与信号品质。在延伸服务区域中,802.11提供了MAC层次的移动性。附接至「传输系统」的工作站,可以将所送出的帧,定位到某部移动式工作站的MAC地址,并让基站充当该移动式工作站的最终转运点(final hop)。传输系统上的工作站无须知道某部移动式工作站的确切位置,只要该移动式工作站位于同样的服务区域。在同一ESS中,如果工作站从一个基站移动到另一基站,就发生了BSS转换,则新的基站会与工作站连接并告诉旧的基站(通过传输系统).
C.ESS转换
所谓ESS转换,是指从某个ESS移动至另一个ESS。802.11并未支持此类转换,不过允许工作站在离开第一个ESS的范围之后,与第二个ESS里的基站连接。可以确定的是,较上层的连接必然会因此而断线。
二、802.11 MAC
2.1 MAC访问与时钟控制
无线介质的访问是由协调功能所管控,以太网之类的CSMA/CA访问,是由分布式协调功能(DCF)所管控,如果需要用到免竞争服务则可能通过架构于DCF之上的点协调功能(PCF)来管控,在各取所需的DCF与精确管控的PCF之间,也可以选择使用介于两种极端之间,采取中庸之道的混合式协调功能(HCF),免竞争服务只提供于基础网络(Infrastructure Network),不过只要工作站支持HCF,就可以在网络中提供服务质量(QoS).
<1>DCF(分散式协调功能) :DCF是标准CSMA/CA访问机制的基础。和以太网一样,在传送数据之前,它会先检查无线链路是否处于空闲状态。为了避免冲突发生,当某个传送者占据频道时,工作站会随机为每个
帧选定一段延后时间。在某些情况之下,DCF可利用CTS/RTS空闲技术,进一步减少碰撞发生的可能性。
<2>PCF(点协调功能) :点协调功能提供的是免竞争服务。称为点协调者的特殊工作站可以确保不必通过竞争即可使用介质。点协调者位于基站,因此只有基础型网络才会使用 PCF。为了赋予比标准竞争式还
高的优先性,PCF 允许工作站经过一段较短的时间即可传送帧。
<3>HCF(混和式协调功能) :有些应用需要尽力传达更高一级的服务质量,却又不需要用到PCF那么严格的管控。HCF允许工作站维护多组服务队列,针对需要更高服务品质的应用,则提拔更多的介质访问机会。
2.1.1载波监听与网络分配矢量
载波监听主要用来判定介质是否处于可用状态。802.11具备两种载波监听功能:物理载波监听与虚拟载波监听。只要其中有一个监听功能显示介质处于忙碌状态,MAC就会将此报告给高层的协议。
物理载波监听功能是由物理层所提供,取决于所使用的介质与调制方式。要为射频介质打造物理载波硬体相当不易(更确切的说法是十分昂贵),原因是除非采用昂贵的电子零件,否则收发器将无法同时进行收发的动作。此外,由于隐藏结点随处可见,物理载波监听并无法提供所有必要的信息。
虚拟载波监听是由网络分配矢量(Network Allocation Vector,简称NAV)所提供。802.11的帧通常会包含一个duration位,用来预定一段介质使用时间。NAV本身就是一个计时器,用来指定预计要占用介质多少时间,以微秒为单位。工作站会将NAV设定为预计使用介质的时间,这包括完成整个处理必须用到的所有帧。其他工作站会由NAV值倒数至零。只要NAV的值不为零,代表介质处于忙的状态,此即虚拟载波监听功能。当NAV为零时,虚拟载波监听功能会显示介质处于闲置状态。
2.1.2帧间隔
802.11 MAC内建避免碰撞的功能,所以工作站会延迟介质的访问,直到介质再度空闲。不同的帧间隔,会为不同类型的传输产生不同的优先次序。其后的决定逻辑十分简单:当介质闲置下来时,高优先级的数据所等待的时间较短。因此,如有任何高优先级的数据待传,在低优先级的帧试图访问介质之前,优先级较高的数据早就将介质据为己用了。为了维持不同数据传输率的互通性,帧间隔的时间值都是固定的,而与传输率无关。
<1>短帧间隔(Short interframe space ,简称SIFS)
SIFS用于高优先级的传输场合,例如RTS/CTS以及正面应答帧。经过一段SIFS(时间),即可进行高优先级的传输。一旦高优先级传输开始,介质即处于忙碌状态,因此相较于必须等待较长时间才能传输的帧,SIFS消逝后即可进行传输的帧优先级较高。
<2>点帧间隔(PCF interframe space ,简称PIFS)
PISF主要被PCF使用在免竞争过程,有时被误解为优先性帧间隔。在免竞争时期,有数据传输的工作站可以等待PISF期间过后加以传送,其优先程度高于任何竞争式传输。
<3>分布式帧间隔(DCF interframe space ,简称DIFS)
DIFS是竞争式服务中最短的介质闲置时间。如果介质闲置时间长于DIFS,工作站可以立即对介质进行访问。
<4>扩展的帧间隔(Extended interframe space ,简称EIFS)
图3-6并没有表明EIFS,因为EIFS并非固定的时间间隔。只有在帧传输出现错误时才会用到EIFS。
2.2 利用DCF进行竞争式访问
传送任何数据之前,工作站必须检查介质是否处于闲置状态。若处于忙碌状态,工作站必须延迟访问,并利用指数型退避(orderly exponential backoff)算法来避免碰撞发生.在所有使用DCF的传输当中,将会运用到两项基本原则:
1. 如果介质闲置时间长于 DIFS,便可立即进行传输。载波监听同时可通过物理与虚拟(NAV)方式进行。
a. 如果之前的帧接收无误,介质至少必须空出一段 DIFS 时间。
b. 如果之前的传输出现错误,介质至少必须空出一段 EIFS 时间。
2.如果介质处于忙碌状态,工作站必须等候至频道再度闲置。802.11 称之为访问延期。一旦访问延期,工作站会等候介质闲置一段 DIFS时间,同时准备指数型退避访问程序。
在特定状况下,会应用到一些额外的规则。其中有一些规则取决于“线上”的特殊状况,与之前传送的结果有关。
1. 错误复原(error recovery)属于传送端的责任。传送端预期每个帧均应收到应答信息,而且必须负责重传,直到传送成功为止。
a. 只有收到正面应答讯息,才表示传送成功。基本交换操作必须完成才算成功。如果某个预期的应答迟迟未到,传送端即会认定其已丢掉,必须加以重送。
b. 所有单点传播数据必须得到应答。(因此,即使无线电波链路本质上属于广播介质,相较于广播数据,单点传播数据基本上还是具备较高的服务质量。)
c. 只要传送失败,重传计数器就会累计,然后重新加以传送。传送失败有可能是因为访问介质失败,也可能是因为得不到应答。不论如何,重传时会等待一段较长时间。
2.涉及多个帧的传送,可以在传输过程的每个步骤更新NAV。当所收到的介质预定时间比目前的NAV还长时,工作站即会更新NAV。设定NAV的方式是以个别的帧为基准。
3.以下的帧类型可在SIFS之后传输,因此优先程度较高:应答(acknowledgment)、RTS/CTS交换程序中的CTS,以及分段程序中的帧片段。
a.一旦传送出第一个帧,工作站就会取得频道的控制权。以后帧及其回应均可使用SIFS进行传送,以锁定频道不被其他工作站使用。
b.传送中,后续帧会将NAV更新成该介质预计使用的时间。
4.如果较高层的封包长度超过所设定的门限,必须使用扩展帧格式。
a.长度超过RTS门限的封包,必须使用RTS/CTS交换程序。
b.长度超过分段门限的封包,必须加以分段。
2.2.1 DCF与错误复原
错误监听与更正是由起始基本帧交换过程的工作站来决定。一旦监听到错误,该工作站必须负责重传。错误监听必须由传送端负责。有时候传送端可根据应答的有无,推论帧是否已经漏失。只要帧被重传,重传器就会累计。每个帧或帧片段就会分别对应到一个重传计数器。工作站本身具有两个重传计数器:短帧重传计数器与长帧重传计数器。长度小于RTS门槛值的帧视为短帧;长度超过该门槛值的数据则为长帧。根据帧的长度,将会分别对应到长短帧重传计数器。帧重传计数由0算起,只要帧传送失败即加以累计。
短帧重传计数器会在下列情况发生时归零:
<1>之前传送的RTS得到CTS的应答时
<2>之前传送的未分段帧得到MAC层的应答时
<3>收到广播或组播的帧时
长帧重传计数器会在下列情况发生时归零:
<1>之前传送的帧大于RTS门限值,并且得到MAC层的应答时
<2>收到广播或组播的帧时
除了响应的重传计数器,MAC会赋予每个帧片段最长的『存活期』。传送出第一个帧片段之后,存活计数器随即启动。一旦超过存活时间,该帧便会被丢弃,因此不会重传其余的帧片段。当然,上层协议也可能监听到数据漏失予以重传。不过当上层协议(如TCP)重传数据,实际上传给802.11MAC的乃是新的帧,所有重传计数器也会归零重新计算。
2.2.2 使用重传计数器
802.11是通过重传机制来提供可靠性。数据传送是通过基本次序,整个过程必须完成才算传送成功。当工作站传送帧时,必须得到接收端的应答,否则便认为传送失败。若传送失败则与该帧或帧片段响应的重传计数器累加。如果达到重传限制,该帧随即被丢弃,并将此状况告知上层协议。
2.2.3 DCF与延迟
哪种无线协议的传输速率最高
初探802.11协议——开篇(IEEE802.11历史与Wi-Fi速率计算)
初探802.11协议——开篇(IEEE802.11历史与Wi-Fi速率计算)