分治算法解最大子序列和问题

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了分治算法解最大子序列和问题相关的知识,希望对你有一定的参考价值。

参考技术A 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

这是一道经典的算法题,在LeetCode上的编号是53。
本文以这道题为例学习分治算法

分治算法的核心是把问题分成两个大致相等的子问题,然后递归对它们求解,这是“分”的部分,在“治”这一阶段将两个子问题的解合并到一起求解。

根据算法的思想,把数组分割成两部分,左半部分和右半部分,最大子序列出现的位置可能在:

递归是这个算法里非常重要的一个环节,它把数组划分到最小单元来进行比较

把数组分成了四份,每一份只有两个元素。计算的过程是从左到右进行,比较左边元素,右边元素和两个元素之和的大小,取最大值,也就是 max(4,-3,(4+(-3))) ,结果是4。同理,整个数组的左半部分最大值是6,最大子序列就是 4,-3,5 。

下面是用javascript实现的分治算法实现

设 是求解大小为N的最大子序列和问题所花费的时间。

经过分析得到两个方程组

为了简化计算,设置两个前提:

得到方程 。
两边同时除以 ,得到:

这个方程对于任意2的幂都成立,所以下面的方程都是正确的

一共有 个方程,所有方程两边相加,消去相同项后得到:

得到最终的结果:
以上的分析基于 是2的幂这个假设,如果不满足,方程不成立;当 不是2的幂时,需要加入一些复杂的分析,但是大 的结果不变。

算法设计与分析--求最大子段和问题(蛮力法分治法动态规划法) C++实现

算法设计与分析--求最大子段和问题

问题描述:

给定由n个整数组成的序列(a1,a2, …,an),求该序列形如

   

 的子段和的最大值,当所有整数均为负整数时,其最大子段和为0。


利用蛮力法求解:

int maxSum(int a[],int n)

	int maxSum = 0;
	int sum = 0;
	for(int i = 0; i < n; i++) //从第一个数开始算起
	
		for(int j = i + 1; j < n; j++)//从i的第二个数开始算起
		
			sum = a[i];
			a[i]  += a[j];
			if(a[i] > sum)
			
				sum = a[i];		//每一趟的最大值
			
		
		if(sum > maxSum)
		
			maxSum = sum;
		

	
	return maxSum;


利用分治法求解:

int maxSum(int a[],int left, int right)

	int sum = 0;
	if(left == right)	//如果序列长度为1,直接求解
	
		if(a[left] > 0) sum = a[left];
		else sum = 0;
	
	else 
	
		int center = (left + right) / 2;	//划分
		int leftsum = maxSum(a,left,center);	//对应情况1,递归求解
		int rightsum = maxSum(a, center + 1, right);//对应情况2, 递归求解
		int s1 = 0;
		int lefts = 0;
		for(int i = center; i >= left; i--)	//求解s1
		
			lefts += a[i];
			if(lefts > s1) s1 = lefts;	//左边最大值放在s1
		
		int s2 = 0; 
		int rights = 0;
		for(int j = center + 1; j <= right; j++)//求解s2
		
			rights += a[j];
			if(rights > s2) s2 =rights;
		
		sum = s1 + s2;				//计算第3钟情况的最大子段和
		if(sum < leftsum) sum = leftsum;	//合并,在sum、leftsum、rightsum中取最大值
		if(sum < rightsum) sum = rightsum;
	
	return sum;



利用动态规划法求解:

int DY_Sum(int a[],int n)

	int sum = 0;
	int *b = (int *) malloc(n * sizeof(int));	//动态为数组分配空间
	b[0] = a[0];
	for(int i = 1; i < n; i++)
	
		if(b[i-1] > 0)
			b[i] = b[i - 1] + a[i];
		else
			b[i] = a[i];
	
	for(int j = 0; j < n; j++)
	
		if(b[j] > sum)
			sum = b[j];
	
	delete []b;		//释放内存
	return sum;





完整测试程序:

#include<iostream>
#include<time.h>
#include<Windows.h>
using namespace std;
#define MAX 10000

int BF_Sum(int a[],int n)   

	int max=0;     
	int sum=0;        
	int i,j;
	for (i=0;i<n-1;i++)        
	         
		sum=a[i];          
		for(j=i+1;j<n;j++)            
		       
			if(sum>=max)                
			                                         
				max=sum;                
			  
			sum+=a[j];         
		    
	    
	return max;
    
int maxSum1(int a[],int left, int right)

	int sum = 0;
	if(left == right)	//如果序列长度为1,直接求解
	
		if(a[left] > 0) sum = a[left];
		else sum = 0;
	
	else 
	
		int center = (left + right) / 2;	//划分
		int leftsum = maxSum1(a,left,center);	//对应情况1,递归求解
		int rightsum = maxSum1(a, center + 1, right);//对应情况2, 递归求解
		int s1 = 0;
		int lefts = 0;
		for(int i = center; i >= left; i--)	//求解s1
		
			lefts += a[i];
			if(lefts > s1) s1 = lefts;	//左边最大值放在s1
		
		int s2 = 0; 
		int rights = 0;
		for(int j = center + 1; j <= right; j++)//求解s2
		
			rights += a[j];
			if(rights > s2) s2 =rights;
		
		sum = s1 + s2;				//计算第3钟情况的最大子段和
		if(sum < leftsum) sum = leftsum;	//合并,在sum、leftsum、rightsum中取最大值
		if(sum < rightsum) sum = rightsum;
	
	return sum;


int DY_Sum(int a[],int n)

	int sum = 0;
	int *b = (int *) malloc(n * sizeof(int));	//动态为数组分配空间
	b[0] = a[0];
	for(int i = 1; i < n; i++)
	
		if(b[i-1] > 0)
			b[i] = b[i - 1] + a[i];
		else
			b[i] = a[i];
	
	for(int j = 0; j < n; j++)
	
		if(b[j] > sum)
			sum = b[j];
	
	delete []b;		//释放内存
	return sum;


int main()

	int num[MAX];
	int i;
	const int n = 40;
	LARGE_INTEGER begin,end,frequency;
	QueryPerformanceFrequency(&frequency);
	//生成随机序列
	cout<<"生成随机序列:";
	srand(time(0));
	for(int i = 0; i < n; i++)
	
		if(rand() % 2 == 0)
			num[i] = rand();
		else
			num[i] = (-1) * rand();
		if(n < 100)
			cout<<num[i]<<" ";
	
	cout<<endl;

	//蛮力法//
	cout<<"\\n蛮力法:"<<endl;
	cout<"最大字段和:";
	QueryPerformanceCounter(&begin);
	cout<<BF_Sum(num,n)<<endl;
	QueryPerformanceCounter(&end);
	cout<<"时间:"
		<<(double)(end.QuadPart - begin.QuadPart) / frequency.QuadPart
		<<"s"<<endl;

	cout<<"\\n分治法:"<<endl;
	cout<"最大字段和:";
	QueryPerformanceCounter(&begin);
	cout<<maxSum1(num,0,n)<<endl;
	QueryPerformanceCounter(&end);
	cout<<"时间:"
		<<(double)(end.QuadPart - begin.QuadPart) / frequency.QuadPart
		<<"s"<<endl;

	cout<<"\\n动态规划法:"<<endl;
	cout<"最大字段和:";
	QueryPerformanceCounter(&begin);
	cout<<DY_Sum(num,n)<<endl;
	QueryPerformanceCounter(&end);
	cout<<"时间:"
		<<(double)(end.QuadPart - begin.QuadPart) / frequency.QuadPart
		<<"s"<<endl;

	system("pause");
	return 0;

测试结果:



以上是关于分治算法解最大子序列和问题的主要内容,如果未能解决你的问题,请参考以下文章

动态规划之最大递增子序列

0.分治永远大于顺序?关于最大子序列和问题的思考

暴力+分治+贪心+DP:最大子序列和

分治法求最大子序列

动态规划的设计思想与实例(最大子段和最长公共子序列0-1背包编辑距离)

五大常用算法:分治动态规划贪心回溯和分支界定