彻底搞明白JDK的Future机制
Posted hanruikai
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了彻底搞明白JDK的Future机制相关的知识,希望对你有一定的参考价值。
什么是Future接口
Future是java.util.concurrent.Future,是Java提供的接口,可以用来做异步执行的状态获取,它避免了异步任务在调用者那里阻塞等待,而是让调用者可以迅速得到一个Future对象,
后续可以通过Future的方法来获取执行结果。一个实例代码如下:
public class Test
public static void main(String[] args) throws ExecutionException, InterruptedException
//创建线程池
ExecutorService executor = Executors.newCachedThreadPool();
Future future = executor.submit(new Task());
//这一步get会阻塞当前线程
System.out.println(future.get());
executor.shutdown();
private static class Task implements Callable<Integer>
@Override
public Integer call() throws Exception
System.out.println("子线程在进行计算");
Thread.sleep(2000);
return 1;
代码很简单,就是将一个Runnable、Callable的实例放到一个线程池里,就会返回一个Future对象。后续通过future.get()取得执行结果,但事实上代码并没有达到异步回调的结果,而是get时阻塞了。
Future原理
因为阅读源码东西太对,这里只是总结关键点,说太多也记不住,先看ExecutorService的submit接口定义,代码如下:
* @param task the task to submit
* @param <T> the type of the task's result
* @return a Future representing pending completion of the task
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
* @throws NullPointerException if the task is null
*/
<T> Future<T> submit(Callable<T> task);
简单分析:
- 入参是callable的实例,这个没用疑问
- 返回参数是Future对象
看代码实现类AbstractExecutorService:
public Future<?> submit(Runnable task)
if (task == null) throw new NullPointerException();
RunnableFuture<Void> ftask = newTaskFor(task, null);
execute(ftask);
return ftask;
public FutureTask(Runnable runnable, V result)
this.callable = Executors.callable(runnable, result);
this.state = NEW; // ensure visibility of callable
新建了一个FutureTask对象,状态state是NEW。可能的状态转换是:
Possible state transitions: * NEW -> COMPLETING -> NORMAL * NEW -> COMPLETING -> EXCEPTIONAL * NEW -> CANCELLED * NEW -> INTERRUPTING -> INTERRUPTED
继续,之后执行的就是FutureTask的run方法,代码如下:
public void run()
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try
Callable<V> c = callable;
if (c != null && state == NEW)
V result;
boolean ran;
try
result = c.call();
ran = true;
catch (Throwable ex)
result = null;
ran = false;
setException(ex);
if (ran)
set(result);
finally
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
我们看上面的代码,分析一下:
先判断state状态,如果不是NEW说明执行完毕,直接return掉。
后面使用CAS操作,判断这个任务是否已经执行,这里FutureTask有个全局的volatile runner字段,这里通过cas将当前线程指定给runner。
这里可以防止callable被执行多次。
继续往下跟,查看finishCompletion方法:
FutureTask中有一个WaiteNode单链表,当执行futureTask.get()方法时,多个线程会将等待的线程的next指向下一个想要get获取结果的线程。
finishCompletion主要就是使用Unsafe.unpark()进行唤醒操作,代码如下:
/**
* Removes and signals all waiting threads, invokes done(), and
* nulls out callable.
*/
private void finishCompletion()
// assert state > COMPLETING;
for (WaitNode q; (q = waiters) != null;)
if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null))
for (;;)
Thread t = q.thread;
if (t != null)
q.thread = null;
LockSupport.unpark(t);
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
break;
done();
callable = null; // to reduce footprint
总结一下:
- 并发原子操作仍旧是利用的CAS原子比较,主要是unsafe类
- 线程的阻塞、等待、唤醒仍旧是利用类似阻塞队列的链表,里面维护一个链表结构,看链表节点定义:
/**
* Simple linked list nodes to record waiting threads in a Treiber
* stack. See other classes such as Phaser and SynchronousQueue
* for more detailed explanation.
*/
static final class WaitNode
volatile Thread thread;
volatile WaitNode next;
WaitNode() thread = Thread.currentThread();
FutureTask的get方法是阻塞的,利用自旋实现,也是最常用的方式,代码如下:
private int awaitDone(boolean timed, long nanos)
throws InterruptedException
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;)
if (Thread.interrupted())
removeWaiter(q);
throw new InterruptedException();
int s = state;
if (s > COMPLETING)
if (q != null)
q.thread = null;
return s;
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
else if (q == null)
q = new WaitNode();
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
q.next = waiters, q);
else if (timed)
nanos = deadline - System.nanoTime();
if (nanos <= 0L)
removeWaiter(q);
return state;
LockSupport.parkNanos(this, nanos);
else
LockSupport.park(this);
记住一点:JDK底层很多实现都是基于下面几个技术:
- JDK底层如何控制并发,保证原子性------------CAS操作
- JDK并发如何阻塞、唤醒线程--------------------单向链表或者双向链表队列,队列节点waitnode就是线程的id、状态、next节点等
- JDK如何实现自旋操作,比如FutureTask的get方法----------------没有那么神奇,就是for循环等待
- JDK如何共享线程数据-----------voliate
- JDK如何隔离线程数据-------------ThreadLocal
Future的不足
Future其实是一种模式,如下图:
future很明显,虽然是异步执行,但是无法准确知道异步任务说明时候执行完毕,如果调用get方法,在异步没有执行完成时,还是阻塞;如果频繁get检测,效率不高。
所以,我理解,使用future的get操作应该在最后一步,其他操作都已经完成了,一个可以参考的例子:
public int getTotal(final List<Integer> a, final List<Integer> b) throws ExecutionException, InterruptedException
Future<Integer> future = Executors.newCachedThreadPool().submit(new Callable<Integer>()
@Override
public Integer call() throws Exception
int r = 0;
for (int num : a)
r += num;
return r;
);
int r = 0;
for (int num : b)
r += num;
return r + future.get();
以上是关于彻底搞明白JDK的Future机制的主要内容,如果未能解决你的问题,请参考以下文章
一文彻底搞懂ReentrantLock原理基于AQS的公平锁+非公平锁