性能优化篇:小心“STL 低效率用法”所带来的性能开销
Posted csstormq
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了性能优化篇:小心“STL 低效率用法”所带来的性能开销相关的知识,希望对你有一定的参考价值。
性能优化篇(2):小心“STL 低效率用法”所带来的性能开销
Author:stormQ
Sunday, 17. November 2019 1 03:53PM
善用 reserve 预分配内存
-
reserve 函数的作用
将容器的容量(即可以容纳的最大元素数量)调整为指定的大小
n
,如果n
小于容器的当前容量,那么直接忽略此操作。 -
适用场景
- 如果
std::vector
中要添加的元素数量已知,那么在添加元素前(通常是在循环中添加元素前)使用reserve
函数预分配std::vector
需要的内存。这样,可以避免由于std::vector
内部发生数据迁移而带来的不必要的元素拷贝开销、创建新内存开销和释放旧内存开销,从而改善程序性能。
- 如果
-
代码示例
源码:
// main.cc
#include <vector>
#define N 1980*1024
class TestObject
public:
TestObject(int a, int b, int c) : a_(a), b_(b), c_(c)
int a_;
int b_;
int c_;
;
std::vector<TestObject> test_data_1;
std::vector<TestObject> test_data_2;
void poor(std::vector<TestObject> &data)
for (int i = 0; i < N; i++)
data.push_back(TestObject(i, i+1, i+2));
void better(std::vector<TestObject> &data)
data.reserve(N);
for (int i = 0; i < N; i++)
data.push_back(TestObject(i, i+1, i+2));
int main()
poor(test_data_1);
better(test_data_2);
return 0;
编译:
$ g++ -std=c++11 -g -Og -o main_Og main.cpp
函数耗时统计:
启动程序方式 | 第一次执行耗时(us) | 第二次执行耗时(us) | 第三次执行耗时(us) | 第四次执行耗时(us) | 第五次执行耗时(us) |
---|---|---|---|---|---|
./main_Og |
|
|
|
|
|
从统计结果中可以看出,示例中better()
函数的执行速度比poor()
函数至少快 2
倍。
- 代码调试
分析poor()
函数添加前 9 个元素时,std::vector
内部数据迁移情况。具体调试过程如下:
(gdb) l 25
20
21 void poor(std::vector<TestObject> &data)
22
23 for (int i = 0; i < N; i++)
24
25 data.push_back(TestObject(i, i+1, i+2));
26
27
28
29 void better(std::vector<TestObject> &data)
(gdb) b 25
Breakpoint 3 at 0x401065: file m.cpp, line 25.
(gdb) c
Continuing.
Breakpoint 3, poor (data=std::vector of length 0, capacity 0) at m.cpp:25
25 data.push_back(TestObject(i, i+1, i+2));
(gdb) c
Continuing.
Breakpoint 3, poor (data=std::vector of length 1, capacity 1 = ...) at m.cpp:25
25 data.push_back(TestObject(i, i+1, i+2));
(gdb) display data.size()
1: data.size() = 1
(gdb) display &data[0]
2: &data[0] = (TestObject *) 0x614c20
(gdb) c
Continuing.
Breakpoint 3, poor (data=std::vector of length 2, capacity 2 = ...) at m.cpp:25
25 data.push_back(TestObject(i, i+1, i+2));
1: data.size() = 2
2: &data[0] = (TestObject *) 0x614c40
(gdb)
Continuing.
Breakpoint 3, poor (data=std::vector of length 3, capacity 4 = ...) at m.cpp:25
25 data.push_back(TestObject(i, i+1, i+2));
1: data.size() = 3
2: &data[0] = (TestObject *) 0x614c60
(gdb)
Continuing.
Breakpoint 3, poor (data=std::vector of length 4, capacity 4 = ...) at m.cpp:25
25 data.push_back(TestObject(i, i+1, i+2));
1: data.size() = 4
2: &data[0] = (TestObject *) 0x614c60
(gdb)
Continuing.
Breakpoint 3, poor (data=std::vector of length 5, capacity 8 = ...) at m.cpp:25
25 data.push_back(TestObject(i, i+1, i+2));
1: data.size() = 5
2: &data[0] = (TestObject *) 0x614ca0
(gdb)
Continuing.
Breakpoint 3, poor (data=std::vector of length 6, capacity 8 = ...) at m.cpp:25
25 data.push_back(TestObject(i, i+1, i+2));
1: data.size() = 6
2: &data[0] = (TestObject *) 0x614ca0
(gdb)
Continuing.
Breakpoint 3, poor (data=std::vector of length 7, capacity 8 = ...) at m.cpp:25
25 data.push_back(TestObject(i, i+1, i+2));
1: data.size() = 7
2: &data[0] = (TestObject *) 0x614ca0
(gdb)
Continuing.
Breakpoint 3, poor (data=std::vector of length 8, capacity 8 = ...) at m.cpp:25
25 data.push_back(TestObject(i, i+1, i+2));
1: data.size() = 8
2: &data[0] = (TestObject *) 0x614ca0
(gdb)
Continuing.
Breakpoint 3, poor (data=std::vector of length 9, capacity 16 = ...) at m.cpp:25
25 data.push_back(TestObject(i, i+1, i+2));
1: data.size() = 9
2: &data[0] = (TestObject *) 0x614d10
可以看出,poor()
函数在添加第 2、3、5、9 个元素时,第一个元素的地址——&data[0]
发生了变化。即在这添加这些元素时,std::vector
内部发生了数据迁移。在添加后面的某些元素时,也会导致std::vector
内部数据迁移,这里不再赘述。
分析better()
函数添加前 9 个元素时,std::vector
内部是否有数据迁移情况。具体调试过程如下:
(gdb) l 34
29 void better(std::vector<TestObject> &data)
30
31 data.reserve(N);
32 for (int i = 0; i < N; i++)
33
34 data.push_back(TestObject(i, i+1, i+2));
35
36
37
38 int main()
(gdb) b 34
Breakpoint 4 at 0x400ffe: file m.cpp, line 34.
(gdb) c
Continuing.
Breakpoint 4, better (data=std::vector of length 0, capacity 2027520) at m.cpp:34
34 data.push_back(TestObject(i, i+1, i+2));
(gdb) c
Continuing.
Breakpoint 4, better (data=std::vector of length 1, capacity 2027520 = ...) at m.cpp:34
34 data.push_back(TestObject(i, i+1, i+2));
(gdb) display data.size()
3: data.size() = 1
(gdb) display &data[0]
4: &data[0] = (TestObject *) 0x7ffff2ba6010
(gdb) c
Continuing.
Breakpoint 4, better (data=std::vector of length 2, capacity 2027520 = ...) at m.cpp:34
34 data.push_back(TestObject(i, i+1, i+2));
3: data.size() = 2
4: &data[0] = (TestObject *) 0x7ffff2ba6010
(gdb)
Continuing.
Breakpoint 4, better (data=std::vector of length 3, capacity 2027520 = ...) at m.cpp:34
34 data.push_back(TestObject(i, i+1, i+2));
3: data.size() = 3
4: &data[0] = (TestObject *) 0x7ffff2ba6010
(gdb)
Continuing.
Breakpoint 4, better (data=std::vector of length 4, capacity 2027520 = ...) at m.cpp:34
34 data.push_back(TestObject(i, i+1, i+2));
3: data.size() = 4
4: &data[0] = (TestObject *) 0x7ffff2ba6010
(gdb)
Continuing.
Breakpoint 4, better (data=std::vector of length 5, capacity 2027520 = ...) at m.cpp:34
34 data.push_back(TestObject(i, i+1, i+2));
3: data.size() = 5
4: &data[0] = (TestObject *) 0x7ffff2ba6010
(gdb)
Continuing.
Breakpoint 4, better (data=std::vector of length 6, capacity 2027520 = ...) at m.cpp:34
34 data.push_back(TestObject(i, i+1, i+2));
3: data.size() = 6
4: &data[0] = (TestObject *) 0x7ffff2ba6010
(gdb)
Continuing.
Breakpoint 4, better (data=std::vector of length 7, capacity 2027520 = ...) at m.cpp:34
34 data.push_back(TestObject(i, i+1, i+2));
3: data.size() = 7
4: &data[0] = (TestObject *) 0x7ffff2ba6010
(gdb)
Continuing.
Breakpoint 4, better (data=std::vector of length 8, capacity 2027520 = ...) at m.cpp:34
34 data.push_back(TestObject(i, i+1, i+2));
3: data.size() = 8
4: &data[0] = (TestObject *) 0x7ffff2ba6010
(gdb)
Continuing.
Breakpoint 4, better (data=std::vector of length 9, capacity 2027520 = ...) at m.cpp:34
34 data.push_back(TestObject(i, i+1, i+2));
3: data.size() = 9
4: &data[0] = (TestObject *) 0x7ffff2ba6010
可以看出,better()
函数在添加前 9 个元素时,第一个元素的地址——&data[0]
都一直不变。即在这添加这些元素时,std::vector
内部未发生数据迁移。在添加后面的其他元素时,也不会导致std::vector
内部数据迁移,有兴趣的可以使用条件断点——b 34 if &data[0]!=0x7ffff2ba6010
(0x7ffff2ba6010 为此处调试时 &data[0] 的值)验证这一点。这正是使用 reserve 预分配内存
带来的效果。
上面示例中还有一处可以优化的地方,下文会详细说明。
善用 emplace_back 避免不必要的开销
-
emplace_back 函数的作用
相比与
push_back
函数,emplace_back
函数可以直接构造元素,从而避免不必要的临时对象构造/析构开销。 -
适用场景
- 如果
std::vector
中要添加的元素需要传入参数构造时,用emplace_back
而不是push_back
函数来直接构造元素以避免不必要的开销,从而改善程序性能。
- 如果
-
代码示例
源码:
// main.cc
#include <vector>
#define N 1980*1024
class TestObject
public:
TestObject(int a, int b, int c) : a_(a), b_(b), c_(c)
int a_;
int b_;
int c_;
;
std::vector<TestObject> test_data_1;
std::vector<TestObject> test_data_2;
void poor(std::vector<TestObject> &data)
data.reserve(N);
for (int i = 0; i < N; i++)
data.push_back(TestObject(i, i+1, i+2));
void better(std::vector<TestObject> &data)
data.reserve(N);
for (int i = 0; i < N; i++)
data.emplace_back(i, i+1, i+2);
int main()
poor(test_data_1);
better(test_data_2);
return 0;
编译:
$ g++ -std=c++11 -g -Og -o main_Og main.cpp
函数耗时统计:
启动程序方式 | 第一次执行耗时(us) | 第二次执行耗时(us) | 第三次执行耗时(us) | 第四次执行耗时(us) | 第五次执行耗时(us) |
---|---|---|---|---|---|
./main_Og |
|
|
|
|
|
从统计结果中可以看出,示例中better()
函数的执行速度比poor()
函数至少快 1.5
倍。
- 代码调试
为了验证emplace_back
函数的作用,引入三个全局变量g_count_1
、g_count_2
和g_count_3
用于统计构造函数、拷贝构造函数、析构函数被调用的次数。修改后的源码为:
// main.cc
#include <vector>
#define N 1980*1024
int g_count_1 = 0;
int g_count_2 = 0;
int g_count_3 = 0;
class TestObject
public:
TestObject(int a, int b, int c) : a_(a), b_(b), c_(c)
g_count_1++;
TestObject(const TestObject &other)
if (this != &other)
this->a_ = other.a_;
this->b_ = other.b_;
this->c_ = other.c_;
g_count_2++;
~TestObject()
g_count_3++;
int a_;
int b_;
int c_;
;
std::vector<TestObject> test_data_1;
std::vector<TestObject> test_data_2;
void poor(std::vector<TestObject> &data)
data.reserve(N);
for (int i = 0; i < N; i++)
data.push_back(TestObject(i, i+1, i+2));
void better(std::vector<TestObject> &data)
data.reserve(N);
for (int i = 0; i < N; i++)
data.emplace_back(i, i+1, i+2);
int main()
g_count_1 = 0;
g_count_2 = 0;
g_count_3 = 0;
poor(test_data_1);
g_count_1 = 0;
g_count_2 = 0;
g_count_3 = 0;
better(test_data_2);
g_count_1 = 0;
return 0;
具体调试过程如下:
(gdb) l
61
62 int main()
63
64 g_count_1 = 0;
65 g_count_2 = 0;
66 g_count_3 = 0;
67 poor(test_data_1);
68
69 g_count_1 = 0;
70 g_count_2 = 0;
71 g_count_3 = 0;
72 better(test_data_2);
73 g_count_1 = 0;
74
75 return 0;
76
(gdb) b 69
Breakpoint 2 at 0x400b3e: file main.cpp, line 69.
(gdb) b 73
Breakpoint 3 at 0x400b66: file main.cpp, line 73.
(gdb) display g_count_1
1: g_count_1 = 0
(gdb) display g_count_2
2: g_count_2 = 0
(gdb) display g_count_3
3: g_count_3 = 0
(gdb) c
Continuing.
Breakpoint 2, main () at main.cpp:69
69 g_count_1 = 0;
1: g_count_1 = 2027520
2: g_count_2 = 2027520
3: g_count_3 = 2027520
(gdb) n
70 g_count_2 = 0;
1: g_count_1 = 0
2: g_count_2 = 2027520
3: g_count_3 = 2027520
(gdb)
71 g_count_3 = 0;
1: g_count_1 = 0
2: g_count_2 = 0
3: g_count_3 = 2027520
(gdb)
72 better(test_data_2);
1: g_count_1 = 0
2: g_count_2 = 0
3: g_count_3 = 0
(gdb) n
Breakpoint 3, main () at main.cpp:73
73 g_count_1 = 0;
1: g_count_1 = 2027520
2: g_count_2 = 0
3: g_count_3 = 0
(gdb) n
76
1: g_count_1 = 0
2: g_count_2 = 0
3: g_count_3 = 0
可以看出,poor
函数在执行过程中调用容器元素构造函数、析构函数和拷贝构造函数的次数都是 2027520(2027520 = 1980 x 1024),验证了push_back
函数的三种开销:临时对象的构造/析构开销和拷贝开销。better
函数在执行过程中调用容器元素构造函数、析构函数和拷贝构造函数的次数分别是 2027520、0、0,验证了emplace_back
函数只有必要的构造元素开销,不会引入临时对象,避免了不必要的临时对象构造/析构开销,从而改善程序性能。
善用 std::move 避免不必要的拷贝开销
-
std::move 函数的作用
移动而非拷贝数据以避免不必要的拷贝开销,从而改善程序性能。
-
适用场景
- 构造函数的参数列表中有类型为
std::vector
的参数,并且该参数只在构造过程中使用。
- 构造函数的参数列表中有类型为
-
代码示例
源码:
// main.cpp
#include <list>
#include <vector>
#define N 1980*1024
class TestObject
public:
TestObject(int a, int b, int c) : a_(a), b_(b), c_(c)
int a_;
int b_;
int c_;
;
class Element
public:
explicit Element(const std::vector<TestObject> &data)
: data_(data)
explicit Element(std::vector<TestObject> &&data)
: data_(std::move(data))
private:
std::vector<TestObject> data_;
;
std::list<Element> test_data_1;
std::list<Element> test_data_2;
Element *g_ele = nullptr;
void poor(std::list<Element> &data)
std::vector<TestObject> vec;
vec.reserve(N);
for (int i = 0; i < N; i++)
vec.push_back(TestObject(i, i+1, i+2));
data.emplace_back(vec);
g_ele = &data.front();
void better(std::list<Element> &data)
std::vector<TestObject> vec;
vec.reserve(N);
for (int i = 0; i < N; i++)
vec.emplace_back(i, i+1, i+2);
data.emplace_back(std::move(vec));
g_ele = &data.front();
int main()
poor(test_data_1);
better(test_data_2);
return 0;
编译:
$ g++ -std=c++11 -g -Og -o main_Og main.cpp
函数耗时统计:
启动程序方式 | 第一次执行耗时(us) | 第二次执行耗时(us) | 第三次执行耗时(us) | 第四次执行耗时(us) | 第五次执行耗时(us) |
---|---|---|---|---|---|
./main_Og |
|
|
|
|
|
从统计结果中可以看出,示例中better()
函数的执行速度比poor()
函数至少快 2
倍。
- 代码调试
验证data.emplace_back(vec); 会引发拷贝开销
,具体调试过程如下:
(gdb) l 50
35
36 std::list<Element> test_data_1;
37 std::list<Element> test_data_2;
38 Element *g_ele = nullptr;
39
40 void poor(std::list<Element> &data)
41
42 std::vector<TestObject> vec;
43 vec.reserve(N);
44 for (int i = 0; i < N; i++)
45
46 vec.push_back(TestObject(i, i+1, i+2));
47
48
49 data.emplace_back(vec);
50 g_ele = &data.front();
51
52
53 void better(std::list<Element> &data)
54
55 std::vector<TestObject> vec;
56 vec.reserve(N);
57 for (int i = 0; i < N; i++)
58
59 vec.emplace_back(i, i+1, i+2);
60
61
62 data.emplace_back(std::move(vec));
63 g_ele = &data.front();
64
(gdb) b 50
Breakpoint 3 at 0x40131c: file p.cpp, line 50.
(gdb) c
Continuing.
Breakpoint 3, poor (data=std::__cxx11::list = ...) at p.cpp:50
50 g_ele = &data.front();
(gdb) display vec._M_impl
1: vec._M_impl = <std::allocator<TestObject>> = <__gnu_cxx::new_allocator<TestObject>> = <No data fields>, <No data fields>, _M_start = 0x7ffff5a2b010,
_M_finish = 0x7ffff715f010, _M_end_of_storage = 0x7ffff715f010
(gdb) n
42 std::vector<TestObject> vec;
1: vec._M_impl = <std::allocator<TestObject>> = <__gnu_cxx::new_allocator<TestObject>> = <No data fields>, <No data fields>, _M_start = 0x7ffff5a2b010,
_M_finish = 0x7ffff715f010, _M_end_of_storage = 0x7ffff715f010
(gdb) display g_ele->data_._M_impl
2: g_ele->data_._M_impl = <std::allocator<TestObject>> = <__gnu_cxx::new_allocator<TestObject>> = <No data fields>, <No data fields>, _M_start = 0x7ffff42f6010,
_M_finish = 0x7ffff5a2a010, _M_end_of_storage = 0x7ffff5a2a010
可以看出,poor
函数中的临时对象vec
的内存地址范围为0x7ffff5a2b010~0x7ffff715f010
(vec._M_impl._M_start 的值为 0x7ffff5a2b010,vec._M_impl.M_end_of_storage 的值为 0x7ffff715f010)。全局变量test_data_1
首元素的数据成员data_
的内存地址范围为0x7ffff42f6010~0x7ffff5a2a010
(g_ele->data._M_impl.M_start 的值为 0x7ffff42f6010,g_ele->data._M_impl._M_end_of_storage 的值为 0x7ffff5a2a010)。两者的内存地址范围不相同。因此,全局变量test_data_1
首元素的数据成员data_
是从临时对象vec
拷贝而来的,从而验证了data.emplace_back(vec); 会引发拷贝开销
。
验证data.emplace_back(std::move(vec)); 不会引发拷贝开销
,具体调试过程如下:
(gdb) b 59
Breakpoint 4 at 0x4010ba: file p.cpp, line 59.
(gdb) b 63
Breakpoint 5 at 0x401147: file p.cpp, line 63.
(gdb) c
Continuing.
poor_function elapsed_time: 59091892 us
Breakpoint 4, better (data=empty std::__cxx11::list) at p.cpp:59
59 vec.emplace_back(i, i+1, i+2);
2: g_ele->data_._M_impl = <std::allocator<TestObject>> = <__gnu_cxx::new_allocator<TestObject>> = <No data fields>, <No data fields>, _M_start = 0x7ffff42f6010,
_M_finish = 0x7ffff5a2a010, _M_end_of_storage = 0x7ffff5a2a010
(gdb) display vec._M_impl
3: vec._M_impl = <std::allocator<TestObject>> = <__gnu_cxx::new_allocator<TestObject>> = <No data fields>, <No data fields>, _M_start = 0x616060, _M_finish = 0x616060,
_M_end_of_storage = 0x1d4a060
(gdb) d 4
(gdb) c
Continuing.
Breakpoint 5, better (data=std::__cxx11::list = ...) at p.cpp:63
63 g_ele = &data.front();
2: g_ele->data_._M_impl = <std::allocator<TestObject>> = <__gnu_cxx::new_allocator<TestObject>> = <No data fields>, <No data fields>, _M_start = 0x7ffff42f6010,
_M_finish = 0x7ffff5a2a010, _M_end_of_storage = 0x7ffff5a2a010
3: vec._M_impl = <std::allocator<TestObject>> = <__gnu_cxx::new_allocator<TestObject>> = <No data fields>, <No data fields>, _M_start = 0x0, _M_finish = 0x0,
_M_end_of_storage = 0x0
(gdb) n
55 std::vector<TestObject> vec;
2: g_ele->data_._M_impl = <std::allocator<TestObject>> = <__gnu_cxx::new_allocator<TestObject>> = <No data fields>, <No data fields>, _M_start = 0x616060, _M_finish = 0x1d4a060,
_M_end_of_storage = 0x1d4a060
3: vec._M_impl = <std::allocator<TestObject>> = <__gnu_cxx::new_allocator<TestObject>> = <No data fields>, <No data fields>, _M_start = 0x0, _M_finish = 0x0,
_M_end_of_storage = 0x0
可以看出,better
函数中的临时对象vec
的内存地址范围为0x616060~0x1d4a060
(vec._M_impl._M_start 的值为 0x616060,vec._M_impl.M_end_of_storage 的值为 0x1d4a060)。全局变量test_data_2
首元素的数据成员data_
的内存地址范围为0x616060~0x1d4a060
(g_ele->data._M_impl.M_start 的值为 0x616060,g_ele->data._M_impl._M_end_of_storage 的值为 0x1d4a060)。两者的内存地址范围相同。因此,全局变量test_data_2
首元素的数据成员data_
是直接将临时对象vec
移动而来的,从而验证了data.emplace_back(std::move(vec)); 不会引发拷贝开销
。另外,需要注意的是,临时对象vec
在被移动之后将不再有效。
如果你觉得本文对你有所帮助,欢迎关注公众号,支持一下!
以上是关于性能优化篇:小心“STL 低效率用法”所带来的性能开销的主要内容,如果未能解决你的问题,请参考以下文章