High&NewTech:2021 年Google谷歌 I/O 开发者大会 Kemal 等三人主题演讲分享《TensorFlow 在机器学习领域的进展》
Posted TensorFlow 社区
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了High&NewTech:2021 年Google谷歌 I/O 开发者大会 Kemal 等三人主题演讲分享《TensorFlow 在机器学习领域的进展》相关的知识,希望对你有一定的参考价值。
作者:一个处女座的程序猿
时间:2021年7月1日
作者简介:一个处女座的程序猿,国内互联网圈内知名博主、人工智能领域优秀创作者,全球最大中文 IT 社区 CSDN 博客专家、中国开源社区专家、华为社区专家、掘金社区专家、51CTO 社区专家、CSDN 开发者生态联盟成员,曾受邀采访和评审十多次。在 CSDN 平台所获荣誉尤其辉煌,先后荣获 2018 年 CSDN 博客之星全国前四强、2019 年 CSDN 博客之星全国前六强、2020 年 CSDN 博客之星全国前六强;2020 年周排名全年保持全国第一,博客文章浏览量 2400 万,仅在国内的 CSDN 平台就拥有 50 多万粉丝。国内各大互联网平台累计粉丝 100 多万。
导读: 2021 年线上 I/O 直播大会上,Google 的 Kemal 等人进行了本次主题演讲分享,主要讲解了 TensorFlow 在机器学习领域的一些最新进展,比如使用 TensorFlow.js 构建下一代 Web 应用机器学习;使用 Model Maker 轻松实现跨平台计算机视觉,轻松将 TF Lite 模型部署到网页;使用 TensorFlow Cloud 训练云端 TensorFlow 模型等。
TensorFlow 的发展历程
TensorFlow 开源距今,差不多快五年的时间了。到目前为止,TensorFlow 下载量已经超过 2 亿次,教程和指南浏览量达到 5200 万次,博客上文章阅读量超过 900 万次,YouTube 上的浏览量已经达到 1000 万,TensorFlow 已经发展成为开发者们的一个庞大的工具和框架生态系统。
TensorFlow 实战
Sequential API 非常容易使用。从数据到部署,这是一套跨越开发者工作流的工具,这也可以理解为是一种端到端处理这些工作流的平台。
1、构建神经网络
构建神经网络,此处仅需要使用几行代码!
2、构建生成对抗性网络
Keras 可以帮助我们使用相同的编码技巧实现这些高级用例,但这并非唯一,也可以使用Numpy 构建,在 TensorFlow 2.5 版本中,TF.NumPy 结合了 Numpy API 的简单特性,同时可以使用 GPU 和 TPU 仅需加速,这些都可以在 Colab 这样工具的 web 中免费使用。
TensorFlow 其实是一个生态系统,它的目标是使 ML 在每个阶段中,都变得更加容易。从创建模型、分析模型,部署、运行,它是跨越整个生命周期的工具,保持可靠的 AI 前沿技术。
(1)、创建模型
TensorFlow Hub 为您提供超过 10000 个预先训练好的模型存储库,可以重复使用和构建这些模型,可以在浏览器中测试这些模型。比如,这里有个训练好的识别鸟的模型,此时可以直接在浏览器中拖动图片来测试模型,然后会显示出这是一种什么鸟。
(2)、理解数据—Know Your Data
新的数据集探索工具— Know Your Data,它是一款基于 web 的工具,可以帮助理解丰富的数据集,如图像、文本,可以初步发现潜在的偏差或者不平衡。
Know Your Data (KYD) 是一个新工具,可帮助 ML 研究人员和产品团队了解丰富的数据集(图像和文本),以改善数据和模型质量,同时显示并缓解公平性和偏向性问题。
(3)、训练模型
下一步要进行加载数据、定义特征和标签。其实 TensorFlow Lite Model Maker 可以自动化实现以上功能,从而简化使用定义数据训练和重新训练模型的过程。
如果需要迁移学习,借助 Model Maker,就只需要几行代码即可!
(4)、部署模型
在移动端部署模型,可以使用 TensorFlow Lite;在 Web 端部署模型,可以使用 TensorFlow.js。
TensorFlow Cloud 可以实现云端部署模型,可以将训练工作发送到可扩容的云基础设施上运行,而无需离开终端。它作为 python 的包,为从本地调试到分布式训练和 TensorFlow Cloud 上参数调优的无缝转换提供 API。
比如,基于 CIFAR 数据集上的简单图像分类模型的代码示例,通常使用 Keras model.compile 和 model.fit。如果想要在更大的数据集上运行相同的代码,在云上 AI Platform 仅需要添加几行代码,就可以无缝地训练模型。如果训练时想要分布在多个加速器上快速得到结果,只需要配置加速器、工作数量和分发策略即可,超过 10 个 T4 GPU 自动设置。
(5)、分析并优化模型
分析模型的工具主要有两个,分别是 TensorBoard 和 TensorFlow Profiler。TensorBoard 是理解实验的可视化工具包,可跟踪度量、可视化模型,探索模型参数、嵌入等等。TensorFlow Profiler 主要是分析 TensorFlow 代码的执行情况。
优化模型的工具是 Model Optimization Toolkit 是一套工具和技术,用于优化模型以使其运行的更小和更快,比如量化和剪枝,精度损失非常小。
另一个工具是 TensorFlow Lite,用于在移动端部署 TensorFlow 模型。它现在包含了对 Systrace 内置支持,并与 Andriod Studio 中的 Perfetto 无缝集成。
TensorFlow Lite
TensorFlow Lite 是一个开源的机器学习框架,用于在设备上实现模型推理,目前有超过 40 亿台设备使用了该技术,使用 TensorFlow Lite Micro 接触数十亿微控制器和嵌入式系统。
适用于微控制器的 TensorFlow Lite 帮助您在只有数 K 字节内存的微控制器和其他设备上运行 ML 模型。现在,您可以购买通过蓝牙连接浏览器的预存储 Arduino 开发板。您可以使用这些开发板来尝试新的 Experiments With Google,以便您做出手势,甚至创建自己的分类器,并运行自定义 TensorFlow 模型。如果您乐于挑战,我们也在挑战运行新的适用于微处理器的 TensorFlow Lite 。
TensorFlow.js 是一个 javascript 机器学习库,可以让开发者在浏览器以及 Node.js 后端部署机器学习,它以每年三倍的速度强劲增长。
开发者可使用 TensorFlow.js 在 web 端部署机器学习,基于微控制器及嵌入式系统的机器学习具有巨大的变革潜力。
TensorFlow Extended1.0
TFX 1.0,是企业级正式版 ML。它适合在企业规模上生产 ML。Google 创建 TFX 的原因在于我们需要针对 ML 产品和服务构建强大的框架,然后将其开源,以供其他人使用。其中包括对训练模型的支持,相关模型可用于移动应用和 Web 应用,以及基于服务器的应用。与许多合作伙伴成功推出 Beta 版后,Google宣布推出 TFX 1.0,已为企业级正式版 ML 做好准备。
TFX1.0 超越了 TesnsorFlow,包含您可能用于训练模型的其他框架。它包含生产框架所需要的一切,如企业级支持、安全补丁、错误修复等,以及有保证性的向后兼容性。它还有一个稳定的发布节奏,以及对在 Google Cloud 上良好运行的强大支持,还有对移动端、Web 端和NLP 应用的支持。
Vertex AI 平台:Google Cloud 上的托管式 ML 新平台
ML 模型只有在您将其实际投入生产时才具有价值。如您所知,有效且大规模地实现生产化可能具有挑战性。正因如此,Google Cloud 发布了 Vertex AI。这是一个新的托管式机器学习平台,能够帮助您更快地进行实验和 AI 模型的部署。
Vertex AI 的工具涉及开发者工作流的各个阶段,从为数据加标签到使用Notebook和模型,再到预测工具和持续监控,全都整合在一个界面中。尽管您可能已经熟悉其中许多内容,但 Vertex AI 真正与众不同的是它引入了新的 MLOps 功能。现在,您可以使用我们的 MLOps 工具(例如 Vertex Pipeline和 Vertex Feature Store)放心地管理模型,让模型的维护和重复迭代变得不那么复杂。
Vertex AI 是一个管理式机器学习平台,可帮助加快AI模型的实验和部署,使工作流的每个阶段都变得更加容易,Vertex AI 拥有高效地部署 AI 所需的一切,包括Notebook, 数据标注,特征管理,内置Tensorboard,托管式训练服务,模型的预测、连续监控等。
这里特别强调Vertex AI引入的新的 MLOps 功能,可以使用这个套件放心的管理模型,这套工具消除了复杂的用户自定义模型维护的复杂性,提高了可靠性和可重复性,并且可以团队式的跟踪和管理实验。它还可以监视特征质量,并避免导致训练服务偏斜的常见原因(比如数据分布倾斜),从而实现可靠的 ML 生产部署。
Vertex Piplines 是可重复使用的训练流水线,可帮助数据科学家共享组件并快速迭代。Vertex Piplines 是用 python SDK 构建的,所以可以轻松的编写 Kubeflow 流水线和 TFX 流水线。它可以自动跟踪所有元数据,此元数据可以在调试中发挥关键作用。
Vertex AI 还提供了使用 AutoML 自动化模型训练的灵活性,即可以使用表格、文本、图像或者视频数据,通过自定义模型训练和可解释性AI更快地构建复杂的模型。此外,Vertex AI 集成了广泛使用的开源框架,如 Scikit-Learn 和 TensorFlow,除了使用AutoML,用户的任何 ML 框架也都可以通过我们的自定义容器来支持训练和预测。
TensorFlow Forum 论坛
TensorFlow 论坛上,在这里,可以学习如何使用 TensorFlow 将 ML 应用在项目中。
关注 TensorFlow 官方微信公众号,回复“CSDN TensorFlow”,获取更多 I/O 资讯。进入官网了解更多 TensorFlow。
以上是关于High&NewTech:2021 年Google谷歌 I/O 开发者大会 Kemal 等三人主题演讲分享《TensorFlow 在机器学习领域的进展》的主要内容,如果未能解决你的问题,请参考以下文章
High&NewTech:Gartner发布2023年十大战略技术趋势《Gartner Top 10 Strategic Technology Trends for 2023》翻译与解读