最全wordcount
Posted 醉卧千山下,诗酒趁年华。
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了最全wordcount相关的知识,希望对你有一定的参考价值。
World Count
一,hadoop API
1,在HDFS上创建/wordcount/input目录 ,并把word.txt文件上传到该目录下。
hadoop fs -mkdir -p /wordcount/input
hadoop fs -put /root/word.txt /wordcount/input
2,进入$HADOOP_HOME/share/hadoop/mapreduce/目录下,查看文件
cd $HADOOP_HOME/share/hadoop/mapreduce/
3,直接使用hadoop-mapreduce-examples-2.7.7.jar 包进行wordcount计算
hadoop jar hadoop-mapreduce-examples-2.7.7.jar wordcount \\
/wordcount/input/word.txt /wordcount/output
4,查看结果数据
hadoop fs -cat /wordcount/output/part-r-00000
二,spark scala
1,首先进入命令行输入spark-shell
spark-shell
2,单词统计,注意路径是hadoop上的
val rdd1 = sc.textFile("/wordcount/input/word.txt")
val rdd2 = rdd1.flatMap(line => line.split(" "))
val rdd3 = rdd2.map(word => (word,1))
val rdd4 = rdd3.reduceByKey(_ + _)
rdd4.collect
三,word count MR 程序
1 Driver 代码
package com.hdfs.mr;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.BZip2Codec;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class WordDriver
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException
String[] args1 = new String[2];
args1[0]= "d:/hello.txt";
args1[1]="d:/output10";
Configuration conf = new Configuration();
//1, 获取job对象
Job job = Job.getInstance(conf);
//2, 设置JAR存储位置
job.setJarByClass(WordDriver.class);
//3, 关联Map和Reducer类
job.setMapperClass(WordMapper.class);
job.setReducerClass(WordReducer.class);
//4, 设置Maper阶段输出数据的Key和Value类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
//5, 设置最终输出阶段的Key和Value类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//6, 设置输入和输出路径
FileInputFormat.setInputPaths(job,new Path(args1[0]));
FileOutputFormat.setOutputPath(job,new Path(args1[1]));
//7, 提交JOB
job.waitForCompletion(true);
2 Mapper 代码
package com.hdfs.mr;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class WordMapper extends Mapper<LongWritable, Text,Text, IntWritable>
Text k = new Text();
IntWritable v = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException
String line = value.toString();
String[] words = line.split(" ");
for (String word:words)
k.set(word);
context.write(k,v);
3 Reducer代码
package com.hdfs.mr;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.util.Iterator;
public class WordReducer extends Reducer <Text, IntWritable ,Text, IntWritable>
IntWritable v = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException
int sum = 0;
Iterator it = values.iterator();
while (it.hasNext())
sum += Integer.parseInt(it.next().toString());
v.set(sum);
context.write(key,v);
以上是关于最全wordcount的主要内容,如果未能解决你的问题,请参考以下文章