caffe的python接口封装原理与解析
Posted sloanqin
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了caffe的python接口封装原理与解析相关的知识,希望对你有一定的参考价值。
【说明】:欢迎加入:faster-rcnn 交流群 238138700,caffe提供了灵活的python的接口,那么这些接口是如何实现的,caffe是如何有效的把c++中的方法和类,让我们在python中可以灵活调用的;
【c/c++扩展】:python中调用c/c++称为扩展,扩展的方法有很多;
标准的方法是:通过样板来包装c/c++代码,这种是最原始的方式,具体的实现可以参考《python核心编程》--22章,看这章的好处就是可以理解封装的思路是怎样的,为什么可行;
第二类方法就是借用各种各样的工具来减轻我们的工作量:听得最多的应该是SWIG,应该比较好用;caffe用的不是这个,caffe用的是boost python(能够极大提高c++为python写扩展的效率)
【跟其他工具的比较】:这一段我是借鉴别人的评述:点击打开链接
目前有多个工具可以实现跟 Boost.Python 类似的功能,如 SWIG,SIP等。但是它们有很大的不同。SWIG 和 SIP 都定义了一种接口描述语言。我需要先写一个接口描述文件,用于描述我要导出的 C++ 函数和类。然后通过一个翻译器,将接口描述文件翻译成 C++ 程序。最后编译连接生成的 C++ 程序来生成扩展库。而 Boost.Python 用于导出 C++ 函数和类的时候,我需要添加的也是 C++ 的代码,这是 Boost.Python 的最大特点之一。
SWIG 比较适合用来包装 C 语言程序,最近也开始增强一些对 C++ 的支持,但是到目前还不支持嵌套类等 C++ 特性。SIP 似乎除了用在包装 Qt 库之外,就没几个人用。而 Boost.Python 可能是这三者之间对 C++ 支持最好的一个。不过 Boost.Python 也有缺点,就是它使用了大量模板技巧,因此当要导出的元素比较多时,编译非常慢。不过幸好作为“胶水”,我并不需要经常修改和重编译,而且如果使用预编译头的话可以进一步提高编译速度。
Boost.Python 的另外一个优点是,它的设计目标就是让 C++ 程序库可以透明地导出到 Python 中去。即在完全不修改原来 C++ 程序的情况下,导出给 Python 用。在这种设计理念下设计出来的 Boost.Python 比同类工具支持了给完善的 C++ 特性,能够最大程度地保证不修改原 C++ 程序。要知道贸然修改别人的程序,往往会带来许多难以察觉的错误。
基于以上几点,我推荐大家在需要的时候使用 Boost.Python,而不是其它。这也是我写这篇文章的最大动力 :-)。
【boost python】:
官网的教程是最好的教材,写的也比较简洁:点击打开链接
我决定跟着官网的教程走一遍,把需要记录的写下来,建议大家也可以跟着官网教程走一遍;
【caffe的python接口代码】:caffe的python接口的代码就是在./python/caffe/_caffe.cpp文件中实现的,使用的就是boost python库;
#include <Python.h> // NOLINT(build/include_alpha)
// Produce deprecation warnings (needs to come before arrayobject.h inclusion).
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <boost/make_shared.hpp>
#include <boost/python.hpp>
#include <boost/python/raw_function.hpp>
#include <boost/python/suite/indexing/vector_indexing_suite.hpp>
#include <boost/python/enum.hpp>
#include <numpy/arrayobject.h>
// these need to be included after boost on OS X
#include <string> // NOLINT(build/include_order)
#include <vector> // NOLINT(build/include_order)
#include <fstream> // NOLINT
#include "caffe/caffe.hpp"
#include "caffe/layers/memory_data_layer.hpp"
#include "caffe/layers/python_layer.hpp"
#include "caffe/sgd_solvers.hpp"
// Temporary solution for numpy < 1.7 versions: old macro, no promises.
// You're strongly advised to upgrade to >= 1.7.
#ifndef NPY_ARRAY_C_CONTIGUOUS
#define NPY_ARRAY_C_CONTIGUOUS NPY_C_CONTIGUOUS
#define PyArray_SetBaseObject(arr, x) (PyArray_BASE(arr) = (x))
#endif
namespace bp = boost::python;
namespace caffe
// For Python, for now, we'll just always use float as the type.
typedef float Dtype;
const int NPY_DTYPE = NPY_FLOAT32;
// Selecting mode.
void set_mode_cpu() Caffe::set_mode(Caffe::CPU);
void set_mode_gpu() Caffe::set_mode(Caffe::GPU);
// For convenience, check that input files can be opened, and raise an
// exception that boost will send to Python if not (caffe could still crash
// later if the input files are disturbed before they are actually used, but
// this saves frustration in most cases).
static void CheckFile(const string& filename)
std::ifstream f(filename.c_str());
if (!f.good())
f.close();
throw std::runtime_error("Could not open file " + filename);
f.close();
void CheckContiguousArray(PyArrayObject* arr, string name,
int channels, int height, int width)
if (!(PyArray_FLAGS(arr) & NPY_ARRAY_C_CONTIGUOUS))
throw std::runtime_error(name + " must be C contiguous");
if (PyArray_NDIM(arr) != 4)
throw std::runtime_error(name + " must be 4-d");
if (PyArray_TYPE(arr) != NPY_FLOAT32)
throw std::runtime_error(name + " must be float32");
if (PyArray_DIMS(arr)[1] != channels)
throw std::runtime_error(name + " has wrong number of channels");
if (PyArray_DIMS(arr)[2] != height)
throw std::runtime_error(name + " has wrong height");
if (PyArray_DIMS(arr)[3] != width)
throw std::runtime_error(name + " has wrong width");
// Net constructor for passing phase as int
shared_ptr<Net<Dtype> > Net_Init(
string param_file, int phase)
CheckFile(param_file);
shared_ptr<Net<Dtype> > net(new Net<Dtype>(param_file,
static_cast<Phase>(phase)));
return net;
// Net construct-and-load convenience constructor
shared_ptr<Net<Dtype> > Net_Init_Load(
string param_file, string pretrained_param_file, int phase)
CheckFile(param_file);
CheckFile(pretrained_param_file);
shared_ptr<Net<Dtype> > net(new Net<Dtype>(param_file,
static_cast<Phase>(phase)));
net->CopyTrainedLayersFrom(pretrained_param_file);
return net;
void Net_Save(const Net<Dtype>& net, string filename)
NetParameter net_param;
net.ToProto(&net_param, false);
WriteProtoToBinaryFile(net_param, filename.c_str());
void Net_SetInputArrays(Net<Dtype>* net, bp::object data_obj,
bp::object labels_obj)
// check that this network has an input MemoryDataLayer
shared_ptr<MemoryDataLayer<Dtype> > md_layer =
boost::dynamic_pointer_cast<MemoryDataLayer<Dtype> >(net->layers()[0]);
if (!md_layer)
throw std::runtime_error("set_input_arrays may only be called if the"
" first layer is a MemoryDataLayer");
// check that we were passed appropriately-sized contiguous memory
PyArrayObject* data_arr =
reinterpret_cast<PyArrayObject*>(data_obj.ptr());
PyArrayObject* labels_arr =
reinterpret_cast<PyArrayObject*>(labels_obj.ptr());
CheckContiguousArray(data_arr, "data array", md_layer->channels(),
md_layer->height(), md_layer->width());
CheckContiguousArray(labels_arr, "labels array", 1, 1, 1);
if (PyArray_DIMS(data_arr)[0] != PyArray_DIMS(labels_arr)[0])
throw std::runtime_error("data and labels must have the same first"
" dimension");
if (PyArray_DIMS(data_arr)[0] % md_layer->batch_size() != 0)
throw std::runtime_error("first dimensions of input arrays must be a"
" multiple of batch size");
md_layer->Reset(static_cast<Dtype*>(PyArray_DATA(data_arr)),
static_cast<Dtype*>(PyArray_DATA(labels_arr)),
PyArray_DIMS(data_arr)[0]);
Solver<Dtype>* GetSolverFromFile(const string& filename)
SolverParameter param;
ReadSolverParamsFromTextFileOrDie(filename, ¶m);
return SolverRegistry<Dtype>::CreateSolver(param);
struct NdarrayConverterGenerator
template <typename T> struct apply;
;
template <>
struct NdarrayConverterGenerator::apply<Dtype*>
struct type
PyObject* operator() (Dtype* data) const
// Just store the data pointer, and add the shape information in postcall.
return PyArray_SimpleNewFromData(0, NULL, NPY_DTYPE, data);
const PyTypeObject* get_pytype()
return &PyArray_Type;
;
;
struct NdarrayCallPolicies : public bp::default_call_policies
typedef NdarrayConverterGenerator result_converter;
PyObject* postcall(PyObject* pyargs, PyObject* result)
bp::object pyblob = bp::extract<bp::tuple>(pyargs)()[0];
shared_ptr<Blob<Dtype> > blob =
bp::extract<shared_ptr<Blob<Dtype> > >(pyblob);
// Free the temporary pointer-holding array, and construct a new one with
// the shape information from the blob.
void* data = PyArray_DATA(reinterpret_cast<PyArrayObject*>(result));
Py_DECREF(result);
const int num_axes = blob->num_axes();
vector<npy_intp> dims(blob->shape().begin(), blob->shape().end());
PyObject *arr_obj = PyArray_SimpleNewFromData(num_axes, dims.data(),
NPY_FLOAT32, data);
// SetBaseObject steals a ref, so we need to INCREF.
Py_INCREF(pyblob.ptr());
PyArray_SetBaseObject(reinterpret_cast<PyArrayObject*>(arr_obj),
pyblob.ptr());
return arr_obj;
;
bp::object Blob_Reshape(bp::tuple args, bp::dict kwargs)
if (bp::len(kwargs) > 0)
throw std::runtime_error("Blob.reshape takes no kwargs");
Blob<Dtype>* self = bp::extract<Blob<Dtype>*>(args[0]);
vector<int> shape(bp::len(args) - 1);
for (int i = 1; i < bp::len(args); ++i)
shape[i - 1] = bp::extract<int>(args[i]);
self->Reshape(shape);
// We need to explicitly return None to use bp::raw_function.
return bp::object();
bp::object BlobVec_add_blob(bp::tuple args, bp::dict kwargs)
if (bp::len(kwargs) > 0)
throw std::runtime_error("BlobVec.add_blob takes no kwargs");
typedef vector<shared_ptr<Blob<Dtype> > > BlobVec;
BlobVec* self = bp::extract<BlobVec*>(args[0]);
vector<int> shape(bp::len(args) - 1);
for (int i = 1; i < bp::len(args); ++i)
shape[i - 1] = bp::extract<int>(args[i]);
self->push_back(shared_ptr<Blob<Dtype> >(new Blob<Dtype>(shape)));
// We need to explicitly return None to use bp::raw_function.
return bp::object();
BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(SolveOverloads, Solve, 0, 1);
BOOST_PYTHON_MODULE(_caffe) //给封装的C++模块命名,名称就是_caffe,所以后面编译生成的共享库就是_caffe.so
// below, we prepend an underscore to methods that will be replaced
// in Python
bp::scope().attr("__version__") = AS_STRING(CAFFE_VERSION);
// Caffe utility functions //这里使用def封装python中可以调用的C++函数
bp::def("set_mode_cpu", &set_mode_cpu);
bp::def("set_mode_gpu", &set_mode_gpu);
bp::def("set_device", &Caffe::SetDevice);
bp::def("set_random_seed", &Caffe::set_random_seed);
bp::def("layer_type_list", &LayerRegistry<Dtype>::LayerTypeList);
bp::enum_<Phase>("Phase") //这里封装枚举类型Phase
.value("TRAIN", caffe::TRAIN)
.value("TEST", caffe::TEST)
.export_values();
//封装类Net,添加了构造函数、成员函数、成员变量
bp::class_<Net<Dtype>, shared_ptr<Net<Dtype> >, boost::noncopyable >("Net",
bp::no_init)
.def("__init__", bp::make_constructor(&Net_Init))
.def("__init__", bp::make_constructor(&Net_Init_Load))
.def("_forward", &Net<Dtype>::ForwardFromTo)
.def("_backward", &Net<Dtype>::BackwardFromTo)
.def("reshape", &Net<Dtype>::Reshape)
// The cast is to select a particular overload.
.def("copy_from", static_cast<void (Net<Dtype>::*)(const string)>(
&Net<Dtype>::CopyTrainedLayersFrom))
.def("share_with", &Net<Dtype>::ShareTrainedLayersWith)
.add_property("_blob_loss_weights", bp::make_function(
&Net<Dtype>::blob_loss_weights, bp::return_internal_reference<>()))
.def("_bottom_ids", bp::make_function(&Net<Dtype>::bottom_ids,
bp::return_value_policy<bp::copy_const_reference>()))
.def("_top_ids", bp::make_function(&Net<Dtype>::top_ids,
bp::return_value_policy<bp::copy_const_reference>()))
.add_property("_blobs", bp::make_function(&Net<Dtype>::blobs,
bp::return_internal_reference<>()))
.add_property("layers", bp::make_function(&Net<Dtype>::layers,
bp::return_internal_reference<>()))
.add_property("_blob_names", bp::make_function(&Net<Dtype>::blob_names,
bp::return_value_policy<bp::copy_const_reference>()))
.add_property("_layer_names", bp::make_function(&Net<Dtype>::layer_names,
bp::return_value_policy<bp::copy_const_reference>()))
.add_property("_inputs", bp::make_function(&Net<Dtype>::input_blob_indices,
bp::return_value_policy<bp::copy_const_reference>()))
.add_property("_outputs",
bp::make_function(&Net<Dtype>::output_blob_indices,
bp::return_value_policy<bp::copy_const_reference>()))
.def("_set_input_arrays", &Net_SetInputArrays,
bp::with_custodian_and_ward<1, 2, bp::with_custodian_and_ward<1, 3> >())
.def("save", &Net_Save);
//封装类Blob
bp::class_<Blob<Dtype>, shared_ptr<Blob<Dtype> >, boost::noncopyable>(
"Blob", bp::no_init)
.add_property("shape",
bp::make_function(
static_cast<const vector<int>& (Blob<Dtype>::*)() const>(
&Blob<Dtype>::shape),
bp::return_value_policy<bp::copy_const_reference>()))
.add_property("num", &Blob<Dtype>::num)
.add_property("channels", &Blob<Dtype>::channels)
.add_property("height", &Blob<Dtype>::height)
.add_property("width", &Blob<Dtype>::width)
.add_property("count", static_cast<int (Blob<Dtype>::*)() const>(
&Blob<Dtype>::count))
.def("reshape", bp::raw_function(&Blob_Reshape))
.add_property("data", bp::make_function(&Blob<Dtype>::mutable_cpu_data,
NdarrayCallPolicies()))
.add_property("diff", bp::make_function(&Blob<Dtype>::mutable_cpu_diff,
NdarrayCallPolicies()));
//封装类:layer
bp::class_<Layer<Dtype>, shared_ptr<PythonLayer<Dtype> >,
boost::noncopyable>("Layer", bp::init<const LayerParameter&>())
.add_property("blobs", bp::make_function(&Layer<Dtype>::blobs,
bp::return_internal_reference<>()))
.def("setup", &Layer<Dtype>::LayerSetUp)
.def("reshape", &Layer<Dtype>::Reshape)
.add_property("phase", bp::make_function(&Layer<Dtype>::phase))
.add_property("type", bp::make_function(&Layer<Dtype>::type));
bp::register_ptr_to_python<shared_ptr<Layer<Dtype> > >();
bp::class_<LayerParameter>("LayerParameter", bp::no_init);
//封装类solver
bp::class_<Solver<Dtype>, shared_ptr<Solver<Dtype> >, boost::noncopyable>(
"Solver", bp::no_init)
.add_property("net", &Solver<Dtype>::net)
.add_property("test_nets", bp::make_function(&Solver<Dtype>::test_nets,
bp::return_internal_reference<>()))
.add_property("iter", &Solver<Dtype>::iter)
.def("solve", static_cast<void (Solver<Dtype>::*)(const char*)>(
&Solver<Dtype>::Solve), SolveOverloads())
.def("step", &Solver<Dtype>::Step)
.def("restore", &Solver<Dtype>::Restore)
.def("snapshot", &Solver<Dtype>::Snapshot);
//封装类SGDSolver,并且该类是Solver的派生类,所以上面封装的Solver的函数和property在该类中也可以调用
bp::class_<SGDSolver<Dtype>, bp::bases<Solver<Dtype> >,
shared_ptr<SGDSolver<Dtype> >, boost::noncopyable>(
"SGDSolver", bp::init<string>());
bp::class_<NesterovSolver<Dtype>, bp::bases<Solver<Dtype> >,
shared_ptr<NesterovSolver<Dtype> >, boost::noncopyable>(
"NesterovSolver", bp::init<string>());
bp::class_<AdaGradSolver<Dtype>, bp::bases<Solver<Dtype> >,
shared_ptr<AdaGradSolver<Dtype> >, boost::noncopyable>(
"AdaGradSolver", bp::init<string>());
bp::class_<RMSPropSolver<Dtype>, bp::bases<Solver<Dtype> >,
shared_ptr<RMSPropSolver<Dtype> >, boost::noncopyable>(
"RMSPropSolver", bp::init<string>());
bp::class_<AdaDeltaSolver<Dtype>, bp::bases<Solver<Dtype> >,
shared_ptr<AdaDeltaSolver<Dtype> >, boost::noncopyable>(
"AdaDeltaSolver", bp::init<string>());
bp::class_<AdamSolver<Dtype>, bp::bases<Solver<Dtype> >,
shared_ptr<AdamSolver<Dtype> >, boost::noncopyable>(
"AdamSolver", bp::init<string>());
bp::def("get_solver", &GetSolverFromFile,
bp::return_value_policy<bp::manage_new_object>());
//作者把用到的各种vector类型封装了
// vector wrappers for all the vector types we use
bp::class_<vector<shared_ptr<Blob<Dtype> > > >("BlobVec")
.def(bp::vector_indexing_suite<vector<shared_ptr<Blob<Dtype> > >, true>())
.def("add_blob", bp::raw_function(&BlobVec_add_blob));
bp::class_<vector<Blob<Dtype>*> >("RawBlobVec")
.def(bp::vector_indexing_suite<vector<Blob<Dtype>*>, true>());
bp::class_<vector<shared_ptr<Layer<Dtype> > > >("LayerVec")
.def(bp::vector_indexing_suite<vector<shared_ptr<Layer<Dtype> > >, true>());
bp::class_<vector<string> >("StringVec")
.def(bp::vector_indexing_suite<vector<string> >());
bp::class_<vector<int> >("IntVec")
.def(bp::vector_indexing_suite<vector<int> >());
bp::class_<vector<Dtype> >("DtypeVec")
.def(bp::vector_indexing_suite<vector<Dtype> >());
bp::class_<vector<shared_ptr<Net<Dtype> > > >("NetVec")
.def(bp::vector_indexing_suite<vector<shared_ptr<Net<Dtype> > >, true>());
bp::class_<vector<bool> >("BoolVec")
.def(bp::vector_indexing_suite<vector<bool> >());
// boost python expects a void (missing) return value, while import_array
// returns NULL for python3. import_array1() forces a void return value.
import_array1();
// namespace caffe
以上是关于caffe的python接口封装原理与解析的主要内容,如果未能解决你的问题,请参考以下文章
《卷积神经网络的Python实现》PDF代码+《解析深度学习卷积神经网络原理与视觉实践》PDF分析