MySQL高可用架构原理及实践注意事项

Posted gonghaiyu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MySQL高可用架构原理及实践注意事项相关的知识,希望对你有一定的参考价值。

mysql 复制

数据库复制本质上就是数据同步。MySQL 数据库是基于二进制日志(binary log)进行数据增量同步,而二进制日志记录了所有对于 MySQL 数据库的修改操作。

在默认 ROW 格式二进制日志中,一条 SQL 操作影响的记录会被全部记录下来,比如一条 SQL语句更新了三行记录,在二进制日志中会记录被修改的这三条记录的前项(before image)和后项(after image)。

对于 INSERT 或 DELETE 操作,则会记录这条被插入或删除记录所有列的信息,我们来看一个例子:

DELETE FROM orders_test 
WHERE o_orderdate = '1997-12-31';
Query OK, 2482 rows affected (0.07 sec)

可以看到,上面这条 SQL 执行的是删除操作,一共删除了有 2482 行记录。可以在 mysql 命令行下使用命令 SHOW BINLOG EVENTS 查看某个二进制日志文件的内容,比如上述删除操作发生在二进制日志文件 binlog.000004 中,你可以看到:

通过 MySQL 数据库自带的命令 mysqlbinlog,可以解析二进制日志,观察到更为详细的每条记录的信息,比如:

从图中,你可以通过二进制日志记录看到被删除记录的完整信息,还有每个列的属性,比如列的类型,是否允许为 NULL 值等。
如果是 UPDATE 操作,二进制日志中还记录了被修改记录完整的前项和后项,比如:

在有二进制日志的基础上,MySQL 数据库就可以通过数据复制技术实现数据同步了。而数据复制的本质就是把一台 MySQL 数据库上的变更同步到另一台 MySQL 数据库上。下面这张图显示了当前 MySQL 数据库的复制架构:

可以看到,在 MySQL 复制中,一台是数据库的角色是 Master(也叫 Primary),剩下的服务器角色是 Slave(也叫 Standby):

  1. Master 服务器会把数据变更产生的二进制日志通过 Dump 线程发送给 Slave 服务器;
  2. Slave 服务器中的 I/O 线程负责接受二进制日志,并保存为中继日志;
  3. SQL/Worker 线程负责并行执行中继日志,即在 Slave 服务器上回放 Master 产生的日志。

得益于二进制日志,MySQL 的复制相比其他数据库,如 Oracle、PostgreSQL 等,非常灵活,用户可以根据自己的需要构建所需要的复制拓扑结构,比如:

MySQL 复制配置

搭建 MySQL 复制实现非常简单,基本步骤如下:

  1. 创建复制所需的账号和权限;
  2. 从 Master 服务器拷贝一份数据,可以使用逻辑备份工具 mysqldump、mysqlpump,或物理备份工具 Clone Plugin;
  3. 通过命令 CHANGE MASTER TO 搭建复制关系;
  4. 通过命令 SHOW SLAVE STATUS 观察复制状态。
    虽然 MySQL 复制原理和实施非常简单,但在配置时却容易出错,请你务必在配置文件中设置如下配置:
gtid_mode = on
enforce_gtid_consistency = 1
binlog_gtid_simple_recovery = 1
relay_log_recovery = ON
master_info_repository = TABLE 
relay_log_info_repository = TABLE

上述设置都是用于保证 crash safe,即无论 Master 还是 Slave 宕机,当它们恢复后,连上主机后,主从数据依然一致,不会产生任何不一致的问题。

我经常听有同学反馈:MySQL会存在主从数据不一致的情况,请确认上述参数都已配置,否则任何的不一致都不是 MySQL 的问题,而是你使用 MySQL 的错误姿势所致。

MySQL复制类型及应用选项

MySQL 复制可以分为以下几种类型:

默认的复制是异步复制,而很多新同学因为不了解 MySQL 除了异步复制还有其他复制的类型,所以错误地在业务中使用了异步复制。为了解决这个问题,我们一起详细了解一下每种复制类型,以及它们在业务中的选型,方便你在业务做正确的选型。

异步复制

在异步复制(async replication)中,Master 不用关心 Slave 是否接收到二进制日志,所以 Master 与 Slave 没有任何的依赖关系。你可以认为 Master 和 Slave 是分别独自工作的两台服务器,数据最终会通过二进制日志达到一致。

异步复制的性能最好,因为它对数据库本身几乎没有任何开销,除非主从延迟非常大,Dump Thread 需要读取大量二进制日志文件。

如果业务对于数据一致性要求不高,当发生故障时,能容忍数据的丢失,甚至大量的丢失,推荐用异步复制,这样性能最好(比如像微博这样的业务,虽然它对性能的要求极高,但对于数据丢失,通常可以容忍)。但往往核心业务系统最关心的就是数据安全,比如监控业务、告警系统。

半同步复制

半同步复制要求 Master 事务提交过程中,至少有 N 个 Slave 接收到二进制日志,这样就能保证当 Master 发生宕机,至少有 N 台 Slave 服务器中的数据是完整的。

半同步复制并不是 MySQL 内置的功能,而是要安装半同步插件,并启用半同步复制功能,设置 N 个 Slave 接受二进制日志成功,比如:

plugin-load="rpl_semi_sync_master=semisync_master.so;rpl_semi_sync_slave=semisync_slave.so"
rpl-semi-sync-master-enabled = 1
rpl-semi-sync-slave-enabled = 1
rpl_semi_sync_master_wait_no_slave = 1

上面的配置中:

  1. 第 1 行要求数据库启动时安装半同步插件;
  2. 第 2、3 行表示分别启用半同步 Master 和半同步 Slave 插件;
  3. 第 4 行表示半同步复制过程中,提交的事务必须至少有一个 Slave 接收到二进制日志。

在半同步复制中,有损半同步复制是 MySQL 5.7 版本前的半同步复制机制,这种半同步复制在Master 发生宕机时,Slave 会丢失最后一批提交的数据,若这时 Slave 提升(Failover)为Master,可能会发生已经提交的事情不见了,发生了回滚的情况。

有损半同步复制原理如下图所示:

可以看到,有损半同步是在 Master 事务提交后,即步骤 4 后,等待 Slave 返回 ACK,表示至少有 Slave 接收到了二进制日志,如果这时二进制日志还未发送到 Slave,Master 就发生宕机,则此时 Slave 就会丢失 Master 已经提交的数据。

而 MySQL 5.7 的无损半同步复制解决了这个问题,其原理如下图所示:

从上图可以看到,无损半同步复制 WAIT ACK 发生在主库事务提交之前,这样即便 Slave 没有收到二进制日志,但是 Master 宕机了,由于最后一个事务还没有提交,所以本身这个数据对外也不可见,不存在丢失的问题。

所以,对于任何有数据一致性要求的业务,如电商的核心订单业务、银行、保险、证券等与资金密切相关的业务,务必使用无损半同步复制。这样数据才是安全的、有保障的、即使发生宕机,从机也有一份完整的数据。

多源复制

无论是异步复制还是半同步复制,都是 1 个 Master 对应 N 个 Slave。其实 MySQL 也支持 N 个 Master 对应 1 个 Slave,这种架构就称之为多源复制。

多源复制允许在不同 MySQL 实例上的数据同步到 1 台 MySQL 实例上,方便在 1 台 Slave 服务器上进行一些统计查询,如常见的 OLAP 业务查询。

多源复制的架构如下所示:

上图显示了订单库、库存库、供应商库,通过多源复制同步到了一台 MySQL 实例上,接着就可以通过 MySQL 8.0 提供的复杂 SQL 能力,对业务进行深度的数据分析和挖掘。

延迟复制

前面介绍的复制架构,Slave 在接收二进制日志后会尽可能快地回放日志,这样是为了避免主从之间出现延迟。而延迟复制却允许Slave 延迟回放接收到的二进制日志,为了避免主服务器上的误操作,马上又同步到了从服务器,导致数据完全丢失。

我们可以通过以下命令设置延迟复制:

CHANGE MASTER TO master_delay = 3600

延迟复制在数据库的备份架构设计中非常常见,比如可以设置一个延迟一天的延迟备机,这样本质上说,用户可以有 1 份 24 小时前的快照。

那么当线上发生误操作,如 DROP TABLE、DROP DATABASE 这样灾难性的命令时,用户有一个 24 小时前的快照,数据可以快速恢复。

对金融行业来说,延迟复制是你备份设计中,必须考虑的一个架构部分。

总结

  1. 二进制日志记录了所有对于 MySQL 变更的操作;
  2. 可以通过命令 SHOW BINLOG EVENTS IN … FROM … 查看二进制日志的基本信息;
  3. 可以通过工具 mysqlbinlog 查看二进制日志的详细内容;
  4. 复制搭建虽然简单,但别忘记配置 crash safe 相关参数,否则可能导致主从数据不一致;
  5. 异步复制用于非核心业务场景,不要求数据一致性;
  6. 无损半同步复制用于核心业务场景,如银行、保险、证券等核心业务,需要严格保障数据一致性;
  7. 多源复制可将多个 Master 数据汇总到一个数据库示例进行分析;
  8. 延迟复制主要用于误操作防范,金融行业要特别考虑这样的场景。

MySQL 读写分离

逻辑日志的优缺点

  1. 学完 15 讲之后,你应该注意到 MySQL 复制基于的二进制日志是一种逻辑日志,其写入的是每个事务中已变更的每条记录的前项、后项。

  2. 有了每条记录的变化内容,用户可以方便地通过分析 MySQL 的二进制日志内容,准时地将 MySQL 中的数据同步到异构的数据平台,如 HBase、ES、Hive 等大数据平台。

  3. 我们可以发现,逻辑日志简单易懂,方便数据之间的同步,但它的缺点是:事务不能太大,否则会导致二进制日志非常大,一个大事务的提交会非常慢。

  4. 假设有个 DELETE 删除操作,删除当月数据,由于数据量可能有 1 亿条记录,可能会产生 100G 的二进制日志,则这条 SQL 在提交时需要等待 100G 的二进制日志写入磁盘,如果二进制日志磁盘每秒写入速度为 100M/秒,至少要等待 1000 秒才能完成这个事务的提交。

所以在 MySQL 中,你一定要对大事务特别对待, 总结起来就是:

  1. 设计时,把 DELETE 删除操作转化为 DROP TABLE/PARTITION 操作
  2. 业务设计时,把大事务拆成小事务。

对于第一点(把 DELETE 删除操作转化为 DROP TABLE/PARTITION 操作),主要是在设计时把流水或日志类的表按时间分表或者分区,这样在删除时,二进制日志内容就是一条 DROP TABLE/PARITION 的 SQL,写入速度就非常快了。

而第二点(把大事务拆分成小事务)也能控制二进制日志的大小。比如对于前面的 DELETE 操作,如果设计时没有分表或分区,那么你可以进行如下面的小事务拆分:

DELETE FROM ...
WHEREE time between ... and ...
LIMIT 1000;

上面的 SQL 就是把一个大的 DELETE 操作拆分成了每次删除 1000 条记录的小操作。而小事务的另一个优势是:可以进行多线程的并发操作,进一步提升删除效率。

MySQL 数据库中,大事务除了会导致提交速度变慢,还会导致主从复制延迟。

试想一下,一个大事务在主服务器上运行了 30 分钟,那么在从服务器上也需要运行 30 分钟。在从机回放这个大事务的过程中,主从服务器之间的数据就产生了延迟;产生大事务的另一种可能性是主服务上没有创建索引,导致一个简单的操作时间变得非常长。这样在从机回放时,也会需要很长的时间从而导致主从的复制延迟。

除了把大事务拆分成小事务,可以避免主从复制延迟,你还可以设置复制回放相关的配置参数,接下来我们就来分析一下主从复制延迟的优化。

主从复制延迟优化

你要牢记:要彻底避免 MySQL 主从复制延迟,数据库版本至少要升级到 5.7,因为之前的MySQL 版本从机回放二进制都是单线程的(5.6 是基于库级别的单线程)。

从 MySQL 5.7 版本开始,MySQL 支持了从机多线程回放二进制日志的方式,通常把它叫作“并行复制”,官方文档中称为“Multi-Threaded Slave(MTS)”。

MySQL 的从机并行复制有两种模式。

  1. COMMIT ORDER: 主机怎么并行,从机就怎么并行。
  2. WRITESET: 基于每个事务,只要事务更新的记录不冲突,就可以并行。

COMMIT ORDER 模式的从机并行复制,从机完全根据主服务的并行度进行回放。理论上来说,主从延迟极小。但如果主服务器上并行度非常小,事务并不小,比如单线程每次插入 1000 条记录,则从机单线程回放,也会存在一些复制延迟的情况。

而 WRITESET 模式是基于每个事务并行,如果事务间更新的记录不冲突,就可以并行。还是以“单线程每次插入 1000 条记录”为例,如果插入的记录没有冲突,比如唯一索引冲突,那么虽然主机是单线程,但从机可以是多线程并行回放!!!

**所以在 WRITESET 模式下,主从复制几乎没有延迟。(推荐)**那么要启用 WRITESET 复制模式,你需要做这样的配置:

binlog_transaction_dependency_tracking = WRITESET                 
transaction_write_set_extraction = XXHASH64
slave-parallel-type = LOGICAL_CLOCK
slave-parallel-workers = 16

因为主从复制延迟会影响到后续高可用的切换,以及读写分离的架构设计,所以在真实的业务中,你要对主从复制延迟进行监控。

主从复制延迟监控

Seconds_Behind_Master

很多同学或许知道通过命令 SHOW SLAVE STATUS,其中的 Seconds_Behind_Master 可以查看复制延迟,如:

但是,Seconds_Behind_Master 不准确!用于严格判断主从延迟的问题并不合适, 有这样三个原因。

  1. 它计算规则是(当前回放二进制时间 - 二进制日志中的时间),如果 I/O 线程有延迟,那么 Second_Behind_Master 为 0,这时可能已经落后非常多了,例如存在有大事务的情况下;
  2. 对于级联复制,最下游的从服务器延迟是不准确的,因为它只表示和上一级主服务器之间的延迟;
  3. 若主从时区不一样,那么 second_behind_master 也不准确;

总的来说,线上业务通过 Seconds_Begind_Master 值观察主从复制延迟并不准确,需要额外引入一张表,才能真正监控主从的复制延迟情况。

心跳表

想要实时准确地监控主从复制延迟,可以在主服务器上引入一张心跳表 heartbeat,用于定期更新时间(比如每 3 秒一次)。于主从复制机制,主机上写入的时间会被复制到从机,这时对于主从复制延迟的判断可以根据如下规则:

主从延迟 = 从机当前时间 - 表 heartbeat 中的时间

这可以很好解决上述 Seconds_Behind_Master 值存在的问题。表 heartbeat 和定期更新时间可以根据类似的设计:

USE DBA;
CREATE TABLE heartbeat (
  server-uuid VARCHAR(36) PRIMARY KEY,
  ts TIMESTAMP(6) NOT NULL
);
REPLACE INTO heartbeat(@@server_uuid, NOW())

上面的设计中,我们创建了DBA库,以及库下的一张表 heartbeat,用于记录当前时间。

REPLACE 语句用于定期更新当前时间,并存入到表 heartbeat,表 heartbeat 在正常运行情况下只有一条记录。定期执行 REPLACE 语句可以使用定期的脚本调度程序,也可以使用 MySQL自带的事件调度器(event scheduler),如:

CREATE EVENT e_heartbeat
ON SCHEDULE  
    EVERY 3 SECOND  
DO  
BEGIN  
    REPLACE INTO DBA.heartbeat VALUES (@@server_uuid,NOW())
END

根据上述 2 个小节所讲述的内容,你已经能正确配置并行复制,并对复制延迟进行监控,这时就可以设计一种称为读写分离的业务架构了。

读写分离设计

读写分离设计是指:把对数据库的读写请求分布到不同的数据库服务器上。对于写入操作只能请求主服务器,而对读取操作则可以将读取请求分布到不同的从服务器上。

这样能有效降低主服务器的负载,提升从服务器资源利用率,从而进一步提升整体业务的性能。下面这张图显示了一种常见的业务读写分离的架构设计:


上图引入了 Load Balance 负载均衡的组件,这样 Server 对于数据库的请求不用关心后面有多少个从机,对于业务来说也就是透明的,只需访问 Load Balance 服务器的 IP 或域名就可以。

通过配置 Load Balance 服务,还能将读取请求平均或按照权重平均分布到不同的从服务器。这可以根据架构的需要做灵活的设计。

请记住:读写分离设计的前提是从机不能落后主机很多,最好是能准实时数据同步,务必一定要开始并行复制,并确保线上已经将大事务拆成小事务。

当然,若是一些报表类的查询,只要不影响最终结果,业务是能够容忍一些延迟的。但无论如何,请一定要在线上数据库环境中做好主从复制延迟的监控。

如果真的由于一些不可预知的情况发生,比如一个初级 DBA 在主机上做了一个大事务操作,导致主从延迟发生,那么怎么做好读写分离设计的兜底呢?


在 Load Balance 服务器,可以配置较小比例的读取请求访问主机,如上图所示的 1%,其余三台从服务器各自承担 33% 的读取请求。

如果发生严重的主从复制情况,可以设置下面从机权重为 0,将主机权重设置为 100%,这样就不会因为数据延迟,导致对于业务的影响了。

总结

  1. MySQL 二进制日志是一种逻辑日志,便于将数据同步到异构的数据平台;
  2. 逻辑日志在事务提交时才写入,若存在大事务,则提交速度很慢,也会影响主从数据之间的同步;
  3. 在 MySQL 中务必将大事务拆分成小事务处理,这样才能避免主从数据延迟的问题;
  4. 通过配置 MTS 并行复制机制,可以进一步缩短主从数据延迟的问题,推荐使用 MySQL 5.7版本,并配置成基于 WRITESET 的复制;
  5. 主从复制延迟监控不能依赖 Seconds_Behind_Master 的值,最好的方法是额外配置一张心跳表;
  6. 读写分离是一种架构上非常常见的方法,你一定要掌握,并做好读写分离架构失效情况下的兜底设计。

高可用设计

业界度量高可用能力也有统一标准:判断宕机时间,并以此计算出每年系统可用时间达到几个 9,来判断高可用架构是否健壮。具体如下表所示:

通常来说,系统至少要达到 4 个 9(99.99%),也就是每年宕机时间不超过 52.56 分钟,否则用户体验会非常差,感觉系统不稳定。

99.99% = 1 - 52.56 / (3652460)

不过 4 个 9 宕机 52 分钟对于生产环境的影响还是比较大,但是 5 个 9 对大部分系统来说要求又太高。所以一些云服务商会提出一个 99.995% 的可用性概念,那么系统一年的不可用时长为:

不可用时长 = (1 - 99.995%)36524*60 = 26.28 (分钟),即一年最多的影响服务的时间为 26.28 分钟。

高可用设计的两个因素

  1. 系统要达到高可用,一定要做好软硬件的冗余,消除单点故障(SPOF single point of failure)。冗余是高可用的基础,通常认为,系统投入硬件资源越多,冗余也就越多,系统可用性也就越高。
  2. 除了做好冗余,系统还要做好故障转移(Failover)的处理。也就是在最短的时间内发现故障,然后把业务切换到冗余的资源上。

无状态服务高可用设计

无状态的服务(如 nginx )高可用设计非常简单,发现问题直接转移就行,甚至可以通过负载均衡服务,当发现有问题,直接剔除:

上图中,当第一台 Ningx 服务器出现问题,导致服务不可用,Load Balance 负载均衡服务发现后,就可以直接把它剔除。对于上层用户来说,他只会在几秒内的访问出现问题,之后服务就立刻恢复了。无状态的服务,高可用设计就是这么简单。

数据库高可用架构设计

系统高可用设计,真正的难点、痛点不在于无状态服务的设计,而在于数据库的高可用设计,这是因为:

  1. 数据持久化在数据库中,是有状态的服务;
  2. 数据库的容量比较大,Failover 的时间相对无状态服务会更多;
  3. 一些系统,如金融场景的数据库,会要求数据完全不能丢失,这又增加了高可用实现的难度。

其实从架构角度看,数据库高可用本身也是业务高可用,所以我们要从业务全流程的角度出发,思考数据库的高可用设计。我在这里提供了三种数据库的高可用架构设计方法,它们不但适用于 MySQL 数据库,也适用于其他数据库。

基于数据层的数据库高可用架构

基于数据层的数据库高可用架构,就是基于数据同步技术。当主服务器 Master 发生宕机,则故障转移到从服务器 Slave。

可以发现,我们原先的 Slave3 从服务器提升为了新主机,然后建立了新的复制拓扑架构,Slave2、Slave3 都连到新 Master 进行数据同步。

为了在故障转移后对 Service 服务无感知,所以需要引入 VIP(Virtual IP)虚拟 IP 技术,当发生宕机时,VIP 也需要漂移到新的主服务器。

那么这个架构的真正难点在于:

  1. 如何保障数据一致性;
  2. 如何发现主服务器宕机;
  3. 故障转移逻辑的处理;

我们可以通过 MySQL 提供的无损复制技术,来保障“数据一致性”。而“发现主服务器宕机”“处理故障转移逻辑”要由数据库高可用套件完成。

基于业务层的数据库高可用架构

从上图可以看到,Service 服务写入 Master1 主服务器失败后,不用等待故障转移程序启用主从切换,而是直接把数据写入 Master2 主服务器。

这看似是一种非常简单、粗暴的高可用架构实现方式,但能符合这样设计的业务却并不多,因为该设计前提是状态可修改。

比如电商中的订单服务,其基本逻辑就是存储电商业务中每笔订单信息,核心逻辑就是往表Orders 中插入数据,即:

INSERT INTO Orders(o_orderkey, ... ) VALUES (...)

这里 o_orderkey 是主键。为了实现基于业务层的数据库高可用,可以在主键生成过程中加入额外信息,比如服务器编号,这样订单的主键设计变为了:

PK = 有序UUID-服务器编号

这样的话,当写入服务器编号 1 时失败了,业务层会把订单的主键修改为服务器编号 2,这样就实现了业务层的高可用,电商中的这种订单号生成方式也称为“跳单”。

而当查询订单信息时,由于主键中包含了服务器编号,那么业务知道该笔订单存储在哪台服务器,就可以非常快速地路由到指定的服务器。

但这样设计的前提是整个服务的写入主键是可以进行跳单设计,且查询全部依赖主键进行搜索。

看到这里,你是不是觉得非常符合 NoSQL 的 KV 访问设计呢?别忘了前面介绍的 Memcached Plugin 哦。

融合的高可用架构设计

刚刚“基于业务层的数据库高可用架构”中,虽然通过跳单设计,可以实现写入业务的高可用实现。但这时订单服务的查询功能会受到极大影响。在上面的例子中,当发生宕机时,服务器编号为 1 的订单无法查询。我给出一种业务和数据层相结合的高可用设计。这个架构可以解决宕机后,查询服务受限的问题。其架构图如下所示:

上图中,将不同编号的订单根据不同的数据库进行存放,比如服务器编号为 1 的订单存放在数据库 DB1 中,服务器编号为 2 的订单存放在数据库 DB2 中。

此外,这里也用到了 MySQL 复制中的部分复制技术,即左上角的主服务器仅将 DB1 中的数据同步到右上角的服务器。同理,右上角的主服务器仅将 DB2 中的数据同步到左上角的服务器。下面的两台从服务器不变,依然从原来的 MySQL 实例中同步数据。
这样做得好处是:

  1. 在常态情况下,上面两台 MySQL 数据库是双活的,都可以有数据的写入,业务的性能得到极大提升。
  2. 订单数据是完整的,服务器编号为 1 和 2 的数据都在一个 MySQL 实例上。
  3. 更重要的是,这样当发生宕机时,Service 服务的写入不受到影响,写入服务器编号为 1 的订单通过跳单设计写入 DB2。
  4. 同时,对于订单读取也不会受到影响,因为数据都是一个实例上,如:


在这些架构中,仅仅解决了业务连续性的问题:也就是当服务器因为各种原因,发生宕机,导致MySQL 数据库不可用之后,快速恢复业务。但对有状态的数据库服务来说,在一些核心业务系统中,比如电商、金融等,还要保证数据一致性。

这里的“数据一致性”是指在任何灾难场景下,一条数据都不允许丢失(一般也把这种数据复制方式叫作“强同步”)。

今天我们就来看一看,怎么在这种最高要求(数据一致性)的业务场景中,设计 MySQL 的高可用架构。

金融级高可用架构

在上面这些架构中,仅仅解决了业务连续性的问题:也就是当服务器因为各种原因,发生宕机,导致MySQL 数据库不可用之后,快速恢复业务。但对有状态的数据库服务来说,在一些核心业务系统中,比如电商、金融等,还要保证数据一致性。
这里的“数据一致性”是指在任何灾难场景下,一条数据都不允许丢失(一般也把这种数据复制方式叫作“强同步”)。

复制类型的选择

在 15 讲中,我们已经谈到银行、保险、证券等核心业务,需要严格保障数据一致性。那么要想实现数据的强同步,在进行复制的配置时,就要使用无损半同步复制模式。

在 MySQL 内部就是要把参数 rpl_semi_sync_master_wait_point 设置成 AFTER_SYNC 。

但是在高可用设计时,当数据库 FAILOVER 完后,有时还要对原来的主机做额外的操作,这样才能保证主从数据的完全一致性。

我们来看这样一张图:


从图中可以看到,即使启用无损半同步复制,依然存在当发生主机宕机时,最后一组事务没有上传到从机的可能。图中宕机的主机已经提交事务到 101,但是从机只接收到事务 100。如果这个时候 Failover,从机提升为主机,那么这时:


可以看到当主从切换完成后,新的 MySQL 开始写入新的事务102,如果这时老的主服务器从宕机中恢复,则这时事务 101 不会同步到新主服务器,导致主从数据不一致。

但设置 AFTER_SYNC 无损半同步的好处是,虽然事务 101 在原主机已经提交,但是在从机没有收到并返回 ACK 前,这个事务对用户是不可见的,所以,用户感受不到事务已经提交了。

所以,在做高可用设计时,当老主机恢复时,需要做一次额外的处理,把事务101给“回滚”(具体怎么实现我们将在后面讲,高可用套件中具体分析)。

这里我们只要记住,设计数据强一致的高可用方案时,要选择无损半同步复制,另外在发生宕机FAILOVER 后,若老主机恢复,还需要额外处理老主机上已提交但还未发送到从机的数据。

容灾级别

高可用用于处理各种宕机问题,而宕机可以分成服务器宕机、机房级宕机,甚至是一个城市发生宕机。

  1. 机房级宕机: 机房光纤不通/被挖断,机房整体掉电(双路备用电源也不可用);
  2. 城市级宕机: 一般指整个城市的进出口网络,骨干交换机发生的故障(这种情况发生的概率很小)。

如果综合考虑的话,高可用就成了一种容灾处理机制,对应的高可用架构的评判标准就上升了。

  1. 机房内容灾: 机房内某台数据库服务器不可用,切换到同机房的数据库实例,保障业务连续性;
  2. 同城容灾: 机房不可用,切换到同城机房的数据库实例,保障业务连续性;
  3. 跨城容灾: 单个城市机房都不可用,切换到跨城机房的数据库实例,保障业务连续性。

前面我们谈到的高可用设计,都只是机房内的容灾。也就是说,我们的主服务器和从服务器都在一个机房内,现在我们来看一下同城和跨城的容灾设计(我提醒一下,不论是机房内容灾、同城容灾,还是跨城容灾,都是基于 MySQL 的无损半同步复制,只是物理部署方式不同,解决不同的问题)。

对于同城容灾,我看到很多这样的设计:

这种设计没有考虑到机房网络的抖动。如果机房 1 和机房 2 之间的网络发生抖动,那么因为事务提交需要机房 2 中的从服务器接收日志,所以会出现事务提交被 hang 住的问题。

而机房网络抖动非常常见,所以核心业务同城容灾务要采用三园区的架构,如下图所示:

该架构称为“三园区的架构”,如果三个机房都在一个城市,则称为“ 一地三中心”,如果在相邻两个城市,那么就叫“两地三中心”。但这种同城/近城容灾,要求机房网络之间的延迟不超过 5ms。

在三园区架构中,一份数据被存放在了 3 个机房,机房之间根据半同步复制。这里将 MySQL 的半同步复制参数 rpl_semi_sync_master_wait_for_slave_count 设置为 1,表示只要有 1 个半同步备机接收到日志,主服务器上的事务就可以提交。

这样的设计,保证除主机房外,数据在其他机房至少一份完整的数据。

另外,即便机房 1 与机房 2 发生网络抖动,因为机房 1 与机房 3 之间的网络很好,不会影响事务在主服务器上的提交。如果机房 1 的出口交换机或光纤发生故障,那么这时高可用套件会 FAILOVER 到机房 2 或机房 3,因为至少有一份数据是完整的。

机房 2、机房 3 的数据用于保障数据一致性,但是如果要实现读写分离,或备份,还需要引入异步复制的备机节点。所以整体架构调整为:

从图中可以看到,我们加入两个异步复制的节点,用于业务实现读写分离,另外再从机房 3 的备机中,引入一个异步复制的延迟备机,用于做数据误删除操作的恢复。

当设计成类似上述的架构时,你才能认为自己的同城容灾架构是合格的!

另一个重要的点:因为机房 1 中的主服务器要向四个从服务器发送日志,这时网卡有成为瓶颈的可能,所以请务必配置万兆网卡。

在明白三园区架构后,要实现跨城容灾也就非常简单了, 只要把三个机房放在不同城市就行。但这样的设计,当主服务器发生宕机时,数据库就会切到跨城,而跨城之间的网络延迟超过了25 ms。所以,跨城容灾一般设计成“三地五中心”的架构,如下图所示:

在上图中:机房 1、机房 2 在城市 1 中;机房 3、机房 4 在城市 2 中;机房 5 在城市 3 中,三个城市之间的距离超过 200 公里,延迟超过 25ms。

由于有五个机房,所以 ACK 设置为 2,保证至少一份数据在两个机房有数据。这样当发生城市级故障,则城市 2 或城市 3 中,至少有一份完整的数据。

在真实的互联网业务场景中,“三地五中心”应用并不像“三园区”那样普遍。这是因为 25ms的延迟对业务的影响非常大,一般这种架构应用于读多写少的场景,比如某个微服务,如用户中心。

另外,真实的互联网业务场景中,实现跨城容灾,一般基于同城容灾架构,然后再由业务层来保障跨城的数据一致性。

兜底策略:数据核对

到目前为止,我们的高可用是基于 MySQL 的复制技术。但你有没有想过这样几个问题:

  1. 万一数据库的复制有 Bug 呢?导致最终的数据在逻辑上不一致呢?
  2. 主从的数据一定一致吗?你如何判断一定一致呢?

所以,除了高可用的容灾架构设计,我们还要做一层兜底服务,用于判断数据的一致性。这里要引入数据核对,用来解决以下两方面的问题。

  1. 数据在业务逻辑上一致: 这个保障业务是对的;
  2. 主从服务器之间的数据一致: 这个保障从服务器的数据是安全的、可切的。

业务逻辑核对由业务的同学负责编写, 从整个业务逻辑调度看账平不平。例如“今天库存的消耗”是否等于“订单明细表中的总和”,“在途快递” + “已收快递”是否等于“已下快递总和”。总之,这是个业务逻辑,用于对账。

主从服务器之间的核对,是由数据库团队负责的。 需要额外写一个主从核对服务,用于保障主从数据的一致性。这个核对不依赖复制本身,也是一种逻辑核对。思路是:将最近一段时间内主服务器上变更过的记录与从服务器核对,从逻辑上验证是否一致。其实现如图所示:

那么现在的难题是:如何判断最近一段时间内主服务器上变更过的记录?这里有两种思路:

  1. 表结构设计规范中,有讲过每张表有一个 last_modify_date,用于记录每条记录的最后修改时间,按照这个条件过滤就能查出最近更新的记录,然后每条记录比较即可。
  2. 核对服务扫描最近的二进制日志,筛选出最近更新过记录的表和主键,然后核对数据。这种的实现难度会更大一些,但是不要求在数据库上进行查询。

如果在核对过程中,记录又在主上发生了变化,但是还没有同步到从机,我们可以加入复核逻辑,按理来说多复核几次,主从数据应该就一致了。如果复核多次不一致,那么大概率,主从数据就已经是不一致的了。

总结

今天我们学习了金融级高可用的架构设计,内容非常干货,建议你反复阅读。其中涉及的内容在原理上并不复杂,但在实现细节上需要不断打磨,欢迎你在后续的架构设计过程中与我交流。总结来说:

  1. 核心业务复制务必设置为无损半同步复制;
  2. 同城容灾使用三园区架构,一地三中心,或者两地三中心,机房见网络延迟不超过 5ms;
  3. 跨城容灾使用“三地五中心”,跨城机房距离超过 200KM,延迟超过 25ms;
  4. 跨城容灾架构由于网络耗时高,因此一般仅用于读多写少的业务,例如用户中心;
  5. 除了复制进行数据同步外,还需要额外的核对程序进行逻辑核对;
  6. 数据库层的逻辑核对,可以使用 last_modify_date 字段,取出最近修改的记录。

高可用套件选择

当数据库发生宕机时,MySQL 的主从复制并不会自动地切换,这需要高可用套件对数据库主从进行管理。
这一讲,我们就来学习 MySQL 常用的高可用套件,希望你在学完今天的内容之后,能够理解高可用套件的实现原理,将高可用套件用于自己的生产环境。

高可用套件

MySQL 的高可用套件用于负责数据库的 Failover 操作,也就是当数据库发生宕机时,MySQL 可以剔除原有主机,选出新的主机,然后对外提供服务,保证业务的连续性。

为了不让业务感知到数据库的宕机切换,这里要用到 VIP(Virtual IP)技术。其中,VIP 不是真实的物理 IP,而是可以随意绑定在任何一台服务器上。

业务访问数据库,不是服务器上与网卡绑定的物理 IP,而是这台服务器上的 VIP。当数据库服务器发生宕机时,高可用套件会把 VIP 插拔到新的服务器上。数据库 Failover后,业务依旧访问的还是 VIP,所以使用 VIP 可以做到对业务透明。

下面这张图显示了业务通过 VIP 进行数据库的访问:

从上图可以看到,MySQL 的主服务器的 IP 地址是 192.168.1.10,两个从服务器的 IP 地址分别为 192.168.1.20、192.168.1.30。

上层服务访问数据库并没有直接通过物理 IP 192.168.1.10,而是访问 VIP,地址为192.168.1.100。这时,如果 MySQL 数据库主服务器发生宕机,会进行如下的处理:

我们可以看到,当发生 Failover 后,由于上层服务访问的是 VIP 192.168.1.100,所以切换对服务来说是透明的,只是在切换过程中,服务会收到连接数据库失败的提示。但是通过重试机制,当下层数据库完成切换后,服务就可以继续使用了。所以,上层服务一定要做好错误重试的逻辑,否则就算启用 VIP,也无法实现透明的切换。

但是 VIP 也是有局限性的,仅限于同机房同网段的 IP 设定。如果是我们之前设计的三园区同城跨机房容灾架构,VIP 就不可用了。这时就要用名字服务,常见的名字服务就是 DNS(Domain Name Service),如下所示:


从上图可以看到,这里将域名 m1.insidemysql.com 对应的 IP 指向为了 192.168.1.10,上层业务通过域名进行访问。当发生宕机,进行机房级切换后,结果变为:

可以看到,当发生 Failover 后,高可用套件会把域名指向为新的 MySQL 主服务器,IP 地址为202.177.54.20,这样也实现了对于上层服务的透明性。

虽然使用域名或其他名字服务可以解决跨机房的切换问题,但是引入了新的组件。新组件的高可用的问题也需要特别注意。在架构设计时,请咨询公司提供名字服务的小组,和他们一起设计高可用的容灾架构。

以上通过VIP或者域名解析服务的方式都不是很好的解决方式,业界比较好的解决方式采用MHA。

MHA

MHA(Master High Availability)是一款开源的 MySQL 高可用程序,它为 MySQL 数据库主从复制架构提供了 automating master failover 的功能。

MHA 是由业界大名鼎鼎的 Facebook 工程师 Yoshinorim 开发,开源地址为:https://github.com/yoshinorim/mha4mysql-manager它由两大组件所组成,MHA Manger 和 MHA Node。

MHA Manager 通常部署在一台服务器上,用来判断多个 MySQL 高可用组是否可用。当发现有主服务器发生宕机,就发起 failover 操作。MHA Manger 可以看作是 failover 的总控服务器。

而 MHA Node 部署在每台 MySQL 服务器上,MHA Manager 通过执行 Node 节点的脚本完成failover 切换操作。

MHA Manager 和 MHA Node 的通信是采用 ssh 的方式,也就是需要在生产环境中打通 MHA Manager 到所有 MySQL 节点的 ssh 策略,那么这里就存在潜在的安全风险。

另外,ssh 通信,效率也不是特别高。所以,MHA 比较适合用于规模不是特别大的公司,所有MySQL 数据库的服务器数量不超过 20 台。

Orchestrator

Orchestrator 是另一款开源的 MySQL 高可用套件,除了支持 failover 的切换,还可通过Orchestrator 完成 MySQL 数据库的一些简单的复制管理操作。Orchestrator 的开源地址为:https://github.com/openark/orchestrator

你可以把 Orchestrator 当成 MHA 的升级版,而且提供了 HTTP 接口来进行相关数据库的操作,比起 MHA 需要每次登录 MHA Manager 服务器来说,方便很多。


其基本实现原理与 MHA 是一样的,只是把元数据信息存储在了元数据库中,并且提供了HTTP 接口和命令的访问方式,使用上更为友好。

但是由于管控节点到下面的 MySQL 数据库的管理依然是 ssh 的方式,依然存在 MHA 一样的短板问题,总的来说,关于 Orchestrator 我想提醒你,依然只建议使用在较小规模的数据库集群。

数据库管理平台

当然了,虽然 MHA 和 Orchestrator 都可以完成 MySQL 高可用的 failover 操作,但是,在生产环境中如果需要管理成千乃至上万的数据库服务器,由于它们的通信仅采用 ssh 的方式,并不能满足生产上的安全性和性能的要求。

所以,几乎每家互联网公司都会自研一个数据库的管理平台,用于管理公司所有的数据库集群,以及数据库的容灾切换工作。

接下来,我想带你详细了解数据库管理平台的架构。下图显示了数据库管理平台大致的实现框架:


上图中的数据库管理平台是用户操作数据库的入口。对数据库的大部分操作,比如数据库的初始化、数据查询、数据备份等操作、后续都能在这个平台完成,不用登录数据库服务器,这样的好处是能大大提升数据库操作的效率。

数据库管理平台提供了 HTTP API 的方式,可用前后端分离的方式支持 Web、手机等多种访问方式。

元数据库用于存储管理 MySQL 数据库所有的节点信息,比如 IP 地址、端口、域名等。

数据库管理平台 Manager 用来实际控制下面的所有 MySQL 节点,Manager 和后端 MySQL 的通信通过 MySQL 服务器上部署的 agent 方式进行。两者通过 BP 协议以 grpc 的方式通信。这样解决了 ssh 的不安全性以及性能。

其中,agent 用来上报数据库各节点的状态给 Manager,管理节点 Manager 通过上报的信息判断数据库是否宕机,是否需要进行切换,切换到哪个节点。

上图的设计,能完成一个比较基本的数据库管理平台。另外,每个公司有自己的一些需求,也可以做到数据库管理平台中,比如安全要求、审计需求、工单系统等。

所以,有了数据库管理平台,数据库的高可用切换、数据库日常管理和访问,都可以由平台自动完成。有了数据库管理平台,才能真正实现数据库管理的无人驾驶。

InnoDB Cluster:改变历史的新产品

这就是我们今天将要学习的 InnoDB Cluster,它的底层是由 MySQL Group Replication(下面简称MGR)实现。为了让你用好 InnoDB Cluster,今天这一讲我会侧重讲解 MGR 技术、多节点写入、InnoDB Cluster 解决方案、希望你在学完之后能掌握这种新的MySQL 高可用解决方案。

MGR技术

MGR 是官方在 MySQL 5.7 版本推出的一种基于状态机的数据同步机制。与半同步插件类似,MGR 是通过插件的方式启用或禁用此功能。


注意,我们谈及 MGR,不要简单认为它是一种新的数据同步技术,而是应该把它理解为高可用解决方案,而且特别适合应用于对于数据一致性要求极高的金融级业务场景。

首先,MGR 之间的数据同步并没有采用复制技术,而是采用 GCS(Group Communication System)协议的日志同步技术。

GSC 本身是一种类似 Paxos 算法的协议,要求组中的大部分节点都接收到日志,事务才能提交。所以,MRG 是严格要求数据一致的,特别适合用于金融级的环境。由于是类 Paxos 算法,集群的节点要求数量是奇数个,这样才能满足大多数的要求。

有的同学可能会问了:之前介绍的无损半同步也能保证数据强一致的要求吗?

是的,虽然通过无损半同步复制也能保证主从数据的一致性,但通过 GCS 进行数据同步有着更好的性能:当启用 MGR 插件时,MySQL 会新开启一个端口用于数据的同步,而不是如复制一样使用MySQL 服务端口,这样会大大提升复制的效率。

其次,MGR 有两种模式:

  1. 单主(Single Primary)模式;
  2. 多主(Multi Primary)模式。

单主模式只有 1 个节点可以写入,多主模式能让每个节点都可以写入。而多个节点之间写入,如果存在变更同一行的冲突,MySQL 会自动回滚其中一个事务,自动保证数据在多个节点之间的完整性和一致性。

最后,在单主模式下,MGR 可以自动进行 Failover 切换,不用依赖外部的各种高可用套件,所有的事情都由数据库自己完成,比如最复杂的选主(Primary Election)逻辑,都是由 MGR 自己完成,用户不用部署额外的 Agent 等组件。

说了这么多 MGR 的优势,那么它有没有缺点或限制呢? 当然有,主要是这样几点:

  1. 仅支持 InnoDB 表,并且每张表一定要有一个主键;
  2. 目前一个 MGR 集群,最多只支持 9 个节点;
  3. 有一个节点网络出现抖动或不稳定,会影响集群的性能。

第 1、2 点问题不大,因为目前用 MySQL 主流的就是使用 InnoDB 存储引擎,9 个节点也足够用了。
而第 3 点我想提醒你注意,和复制不一样的是&#

以上是关于MySQL高可用架构原理及实践注意事项的主要内容,如果未能解决你的问题,请参考以下文章

《MySQL性能优化和高可用架构实践》于2020-07-01上市

MySQL高可用方案MHA自动Failover与手动Failover的实践及原理

架构高可用高并发系统的设计原则

微服务高可用之熔断器实现原理与 Golang 实践

Qunar Redis 高可用架构设计

010.Redis 主从架构搭建及原理详解