Learning Deep Features for Discriminative Localization

Posted zbxzc

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Learning Deep Features for Discriminative Localization相关的知识,希望对你有一定的参考价值。





Learning Deep Features for Discriminative Localization论文笔记以及Caffe实现

论文笔记 | Learning Deep Features for Discriminative Localization

论文笔记: Learning Deep Features for Discriminative Localization

可以利用论文的思路对原始以224*224或227*227尺寸图像作为输入的AlexNet或VGGNet使用更高分辨率的图像作为输入,主要是为了利用原来在imagenet上预训练的模型进行finetuning。

https://github.com/hshota0530/caffe_models

VGG的论文里还有提到用384x384,512x512的网络进行训练,然后再融合模型来提高精度,增加384x384的输入,类似于256x256,网络的输入参数大小为336x336,和256x256一样,随机截取作为输入,第一个卷积层把stride改为3就可以。512x512的网络由于输入图片太大,只做了两次实验,一次是卷积大小依旧7x7,stride改为4,不成功。一次是加入两个5x5,stride为2的卷积层,依旧不行,然后就没再实验。 


https://github.com/metalbubble/CAM

https://github.com/jacobgil/keras-cam

https://github.com/slundqui/DeepGAP

https://github.com/markdtw/class-activation-mapping


https://github.com/jacobgil/pytorch-grad-cam

https://github.com/jacobgil/keras-grad-cam

https://github.com/taoyilee/Keras_MedicalImgAI/blob/master/app/grad_cam.py

https://github.com/insikk/Grad-CAM-tensorflow



https://github.com/adityac94/Grad_CAM_plus_plus

https://github.com/conan7882/CNN-Visualization


Visualizing and Understanding Convolutional Networks 阅读笔记-网络可视化NO.1

Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization

凭什么相信你,我的CNN模型?(篇一:CAM和Grad-CAM)


论文笔记:WILDCAT: Weakly Supervised Learning of Deep ConvNets

Weakly supervised Localization using deep feature maps

论文笔记: Weakly Supervised Semantic Segmentation Using Superpixel Pooling Network







以上是关于Learning Deep Features for Discriminative Localization的主要内容,如果未能解决你的问题,请参考以下文章

reinforcement learning和deep learning的区别

Deep Learning(深度学习)之Deep Learning学习资源

Deep Learning(深度学习)之Deep Learning的基本思想

Deep Learning(深度学习)之Deep Learning的常用模型或者方法

Halcon deep learning之目标检测笔记(二)

Discriminative LocalizationLearning Deep Features for Discriminative Localization 论文解析(转)