OpenCV图像处理之图像平滑

Posted 黑马程序员官方

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了OpenCV图像处理之图像平滑相关的知识,希望对你有一定的参考价值。

学习目标

  • 了解图像中的噪声类型
  • 了解平均滤波,高斯滤波,中值滤波等的内容
  • 能够使用滤波器对图像进行处理

1 图像噪声

由于图像采集、处理、传输等过程不可避免的会受到噪声的污染,妨碍人们对图像理解及分析处理。常见的图像噪声有高斯噪声、椒盐噪声等。

1.1 椒盐噪声

椒盐噪声也称为脉冲噪声,是图像中经常见到的一种噪声,它是一种随机出现的白点或者黑点,可能是亮的区域有黑色像素或是在暗的区域有白色像素(或是两者皆有)。椒盐噪声的成因可能是影像讯号受到突如其来的强烈干扰而产生、类比数位转换器或位元传输错误等。例如失效的感应器导致像素值为最小值,饱和的感应器导致像素值为最大值。

1.2 高斯噪声

高斯噪声是指噪声密度函数服从高斯分布的一类噪声。由于高斯噪声在空间和频域中数学上的易处理性,这种噪声(也称为正态噪声)模型经常被用于实践中。高斯随机变量z的概率密度函数由下式给出:p(z)=\\frac1\\sqrt2 \\pi \\sigma e^\\frac-(z-\\mu)^22 \\sigma^2p(z)=​√​2π​​​σ​​1​​e​​2σ​2​​​​−(z−μ)​2​​​​​​

其中z表示灰度值,μ表示z的平均值或期望值,σ表示z的标准差。标准差的平方\\sigma^2σ​2​​称为z的方差。高斯函数的曲线如图所示。

2 图像平滑简介

图像平滑从信号处理的角度看就是去除其中的高频信息,保留低频信息。因此我们可以对图像实施低通滤波。低通滤波可以去除图像中的噪声,对图像进行平滑。

根据滤波器的不同可分为均值滤波,高斯滤波,中值滤波, 双边滤波。

2.1 均值滤波

采用均值滤波模板对图像噪声进行滤除。令表示中心在(x, y)点,尺寸为m×n 的矩形子图像窗口的坐标组。 均值滤波器可表示为:

由一个归一化卷积框完成的。它只是用卷积框覆盖区域所有像素的平均值来代替中心元素。

例如,3x3标准化的平均过滤器如下所示:

 均值滤波的优点是算法简单,计算速度较快,缺点是在去噪的同时去除了很多细节部分,将图像变得模糊。

API:

cv.blur(src, ksize, anchor, borderType)

参数:

  • src:输入图像
  • ksize:卷积核的大小
  • anchor:默认值 (-1,-1) ,表示核中心
  • borderType:边界类型

示例:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
# 1 图像读取
img = cv.imread('./image/dogsp.jpeg')
# 2 均值滤波
blur = cv.blur(img,(5,5))
# 3 图像显示
plt.figure(figsize=(10,8),dpi=100)
plt.subplot(121),plt.imshow(img[:,:,::-1]),plt.title('原图')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(blur[:,:,::-1]),plt.title('均值滤波后结果')
plt.xticks([]), plt.yticks([])
plt.show()

 

2.2 高斯滤波

二维高斯是构建高斯滤波器的基础,其概率分布函数如下所示:

G(x,y)的分布是一个突起的帽子的形状。这里的σ可以看作两个值,一个是x方向的标准差\\sigma_xσ​x​​,另一个是y方向的标准差\\sigma_yσ​y​​。

当\\sigma_xσ​x​​和\\sigma_yσ​y​​取值越大,整个形状趋近于扁平;当\\sigma_xσ​x​​和\\sigma_yσ​y​​,整个形状越突起。

正态分布是一种钟形曲线,越接近中心,取值越大,越远离中心,取值越小。计算平滑结果时,只需要将"中心点"作为原点,其他点按照其在正态曲线上的位置,分配权重,就可以得到一个加权平均值。

高斯平滑在从图像中去除高斯噪声方面非常有效。

高斯平滑的流程:

  • 首先确定权重矩阵

假定中心点的坐标是(0,0),那么距离它最近的8个点的坐标如下:

更远的点以此类推。

为了计算权重矩阵,需要设定σ的值。假定σ=1.5,则模糊半径为1的权重矩阵如下:

这9个点的权重总和等于0.4787147,如果只计算这9个点的加权平均,还必须让它们的权重之和等于1,因此上面9个值还要分别除以0.4787147,得到最终的权重矩阵。

  • 计算高斯模糊

有了权重矩阵,就可以计算高斯模糊的值了。

假设现有9个像素点,灰度值(0-255)如下:

每个点乘以对应的权重值:

得到

将这9个值加起来,就是中心点的高斯模糊的值。

对所有点重复这个过程,就得到了高斯模糊后的图像。如果原图是彩色图片,可以对RGB三个通道分别做高斯平滑。

API:

cv2.GaussianBlur(src,ksize,sigmaX,sigmay,borderType)

参数:

  • src: 输入图像
  • ksize:高斯卷积核的大小,注意 : 卷积核的宽度和高度都应为奇数,且可以不同
  • sigmaX: 水平方向的标准差
  • sigmaY: 垂直方向的标准差,默认值为0,表示与sigmaX相同
  • borderType:填充边界类型

示例

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
# 1 图像读取
img = cv.imread('./image/dogGasuss.jpeg')
# 2 高斯滤波
blur = cv.GaussianBlur(img,(3,3),1)
# 3 图像显示
plt.figure(figsize=(10,8),dpi=100)
plt.subplot(121),plt.imshow(img[:,:,::-1]),plt.title('原图')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(blur[:,:,::-1]),plt.title('高斯滤波后结果')
plt.xticks([]), plt.yticks([])
plt.show()

 

2.3 中值滤波

中值滤波是一种典型的非线性滤波技术,基本思想是用像素点邻域灰度值的中值来代替该像素点的灰度值。

中值滤波对椒盐噪声(salt-and-pepper noise)来说尤其有用,因为它不依赖于邻域内那些与典型值差别很大的值。

API:

cv.medianBlur(src, ksize )

参数:

  • src:输入图像
  • ksize:卷积核的大小

示例:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
# 1 图像读取
img = cv.imread('./image/dogsp.jpeg')
# 2 中值滤波
blur = cv.medianBlur(img,5)
# 3 图像展示
plt.figure(figsize=(10,8),dpi=100)
plt.subplot(121),plt.imshow(img[:,:,::-1]),plt.title('原图')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(blur[:,:,::-1]),plt.title('中值滤波后结果')
plt.xticks([]), plt.yticks([])
plt.show()


 

总结

  1. 图像噪声

    • 椒盐噪声:图像中随机出现的白点或者黑点
    • 高斯噪声:噪声的概率密度分布是正态分布
  2. 图像平滑

    • 均值滤波:算法简单,计算速度快,在去噪的同时去除了很多细节部分,将图像变得模糊

      cv.blur()

    • 高斯滤波: 去除高斯噪声

      cv.GaussianBlur()

    • 中值滤波: 去除椒盐噪声

      cv.medianBlur()

以上是关于OpenCV图像处理之图像平滑的主要内容,如果未能解决你的问题,请参考以下文章

Opencv——图像添加椒盐噪声高斯滤波去除噪声原理及手写Python代码实现

python使用opencv对图像添加(高斯/椒盐/泊松/斑点)噪声

python使用opencv对图像添加(高斯/椒盐/泊松/斑点)噪声

python使用opencv对图像添加(高斯/椒盐/泊松/斑点)噪声

图像处理--OpenCV实现图像加噪与滤波

OpenCV学习笔记——多种Smooth平滑处理