[CF Gym101196-I] Waif Until Dark 网络最大流
Posted PushyTao
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[CF Gym101196-I] Waif Until Dark 网络最大流相关的知识,希望对你有一定的参考价值。
题目链接
输入
4 3 1
2 1 2
2 1 2
1 3
1 3
2 1 2 1
输出
2
题目大意:
小孩要玩玩具,一些玩具是属于一定的种类的
但是小孩只能够玩每种种类的一部分玩具,并且小孩并不会喜欢所有的玩具,每个小孩都有自己喜欢玩的玩具,问最多能够有多少个小孩被满足
输入n代表小花子的数量,m玩具的数量,p玩具种类的数量
然后是n行
在这n行的第i行中:
每行一个k,然后是k个数,代表第i个孩子喜欢玩的k个玩具的编号
然后是p行
在这p行的第i行中:
每行有一个l,然后是l个数,最后是r 代表这l个玩具属于种类i,并且这个种类最多用r个(小孩只能够玩每种种类的一部分玩具)
并且最重要的一句话:
Toys can be in at most one category and any toy not listed in these p lines is not in any toy category and all of them can be used. No toy number appears more than once on any line.
玩具最多属于一个种类,如果说有的玩具没有被划分到任意一个种类当中,都可以被任意的玩耍。并且保证所有的玩具只在一行中出现一次
接下来就是建图了:
确定源点和汇点分别为1001、1002
小孩要玩玩具=》将小孩和玩具之间建立容量为1的边
玩具属于玩具的种类 =》 将玩具和种类建议容量为1的边(注意统计没有被添加在种类中的玩具,可以随便玩)
将源点与玩具的种类之间建立容量为r的边(种类最多用r个(小孩只能够玩每种种类的一部分玩具))
将源点与可以随意玩的玩具之间建立容量为1的边
最后将小孩与汇点1002相连,建立容量为1的边
最终求得源点1001与汇点1002的最大流即可获得最大的能够满足的小孩的数量
EK_code:
struct Edge
int u, v;
ll cap, flow;
Edge(int uu, int vv, ll _cap, ll _flow)
u = uu, v = vv, cap = _cap, flow = _flow;
;
struct EdmondsKarp
ll n, m;
vector<Edge> edges;
vector<int> G[maxn];
ll a[maxn], p[maxn];
void _init(int n)
for (int i = 0; i <= n; i++) G[i].clear();
edges.clear();
void add(int u, int v, ll cap)
edges.push_back(Edge(u, v, cap, 0));
edges.push_back(Edge(v, u, 0, 0));
m = edges.size();
G[u].push_back(m - 2);
G[v].push_back(m - 1);
ll maxFlow(int s, int t)
ll Flow = 0;
while (true)
memset(a, 0, sizeof a);
queue<int> que;
que.push(s);
a[s] = INF;
while (que.size())
int u = que.front();
que.pop();
for (int i = 0; i < G[u].size(); i++)
int id = G[u][i];
Edge &e = edges[id];///不加&也是可以的
int to = e.v;
if (!a[to] && e.cap > e.flow)
p[to] = id;
a[to] = min(a[u], e.cap - e.flow);
que.push(to);
if (a[t]) break;
if (!a[t]) break;
for (int u = t; u != s; u = edges[p[u]].u)
edges[p[u]].flow += a[t];
edges[p[u] ^ 1].flow -= a[t];
Flow += a[t];
return Flow;
slove;
int n, m, s, t;
int mp[maxn];
int main()
/**
cin >> n >> m >> s >> t;
slove.init(n);
slove.n = n;
for (int i = 1; i <= m; i++)
int u = read, v = read;
ll cap = read;
slove.add(u,v,cap);
cout << slove.maxFlow(s,t) <<endl;
**/
int p;
n = read,m = read,p = read;
// n child m toy p cate
slove._init(1007);
for(int i=1; i<=n; i++)
int cnt = read;
for(int j=1; j<=cnt; j++)
int u = read;// toy id
slove.add(u,m+i,1);// child <-> toy cap = 1 ok
for(int i=1; i<=n; i++)
slove.add(i+m, 1002, 1);// child <-> end cap = 1; ok
for(int i=1; i<=p; i++)
int l = read;
for(int j=1; j<=l; j++)
int v = read;
mp[v] = 1;
slove.add(m+n+i,v,1);// cate <-> toy cap = 1; ok
int amount = read;// r
slove.add(1001,n+m+i,amount);// 1001 <->cate cap = amount; ok
for(int i=1; i<=m; i++)
if(mp[i] == 0)
slove.add(1001,i,1);// 1001 <-> toy cap = 1;
int ans = slove.maxFlow(1001,1002);
cout << ans << endl;
return 0;
/**
4 3 1
2 1 2
2 1 2
1 3
1 3
2 1 2 1
**/
Dinic_code:
struct Edge
int u, v;
ll cap, flow;
Edge(int _u, int _v, ll _cap, ll _flow)
u = _u, v = _v;
cap = _cap, flow = _flow;
;
struct Dinic
vector<Edge> edge;
vector<int> G[maxn];
ll dis[maxn],cur[maxn];
int n,s,t;
bool vis[maxn];
void init(int x,int _s,int _t)
n = x;
for(int i = 0;i <= n;i++) G[i].clear();
s = _s,t = _t;
edge.clear();
void add(int u,int v,ll cap)
edge.push_back(Edge(u,v,cap,0));
edge.push_back(Edge(v,u,0,0));
G[u].push_back(edge.size() - 2);
G[v].push_back(edge.size() - 1);
bool bfs(int s,int t)
queue<int> que;
memset(vis,0,sizeof vis);
// memset(dis,0,sizeof dis);
dis[s] = 0;
que.push(s);
vis[s] = 1;
while(que.size())
int u = que.front();
que.pop();
for(int i=0;i<G[u].size();i++)
int id = G[u][i];
int to = edge[id].v;
if(!vis[to] && edge[id].cap > edge[id].flow)
dis[to] = dis[u] + 1;
que.push(to);
vis[to] = 1;
return vis[t];
ll dfs(int s,int t,ll rest)
if(s == t || rest == 0) return rest;
ll sum = 0LL;
ll Flow = 0, f;
for(ll& i = cur[s];i < G[s].size();i ++)
Edge& e = edge[G[s][i]];
if(dis[s] + 1 == dis[e.v] && (f = dfs(e.v ,t,min(rest,e.cap - e.flow))) > 0)
e.flow += f;
edge[G[s][i] ^ 1].flow -= f;
Flow += f;
rest -= f;
if(rest == 0) break;
return Flow;
ll getMaxFlow(int s,int t)
ll ans = 0;
while(bfs(s,t))
memset(cur,0,sizeof cur);
ans += dfs(s,t,0x3f3f3f3f);
return ans;
solve;
int mp[1007];
int main()
int n = read,m = read,p = read;
solve.init(1000,1001,1002);
for(int i=1; i<=n; i++)
int cnt = read;
for(int j=1; j<=cnt; j++)
int u = read;// toy id
solve.add(u,m+i,1);// child <-> toy cap = 1 ok
for(int i=1; i<=n; i++)
solve.add(i+m, 1002, 1);// child <-> end cap = 1; ok
for(int i=1; i<=p; i++)
int l = read;
for(int j=1; j<=l; j++)
int v = read;
mp[v] = 1;
solve.add(m+n+i,v,1);// cate <-> toy cap = 1; ok
int amount = read;// r
solve.add(1001,n+m+i,amount);// 1001 <-> cate cap = amount; ok
for(int i=1; i<=m; i++)
if(mp[i] == 0)
solve.add(1001,i,1);// 1001 <-> toy cap = 1;
int ans = solve.getMaxFlow(1001,1002);
cout << ans << endl;
return 0;
/**
**/
以上是关于[CF Gym101196-I] Waif Until Dark 网络最大流的主要内容,如果未能解决你的问题,请参考以下文章
cf gym 100960 G. Youngling Tournament set+树状数组