自然语言处理(NLP)基于Transformer的英文自动文摘
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了自然语言处理(NLP)基于Transformer的英文自动文摘相关的知识,希望对你有一定的参考价值。
【自然语言处理(NLP)】基于Transformer的英文自动文摘
(文章目录)
前言
(一)、任务描述
本示例教程介绍如何使用飞桨完成一个机器翻译任务。
我们将会使用飞桨提供的开源框架完成基于Transformer的英文文本自动文摘模型。飞桨框架实现了Transformer的基本层,因此可以直接调用。
(二)、环境配置
本示例基于飞桨开源框架2.0版本。
import paddle
import paddle.nn.functional as F
import re
import numpy as np
print(paddle.__version__)
# cpu/gpu环境选择,在 paddle.set_device() 输入对应运行设备。
# device = paddle.set_device(gpu)
输出结果如下图1所示:
一、数据准备
(一)、数据集加载
统计数据集信息,确定句子长度,我们采用包含90%句子长度的长度值作为句子的长度
# 统计数据集中句子的长度等信息 en代表输入长文本 ch代表输出摘要
lines = open(data/data80310/train.txt,r,encoding=utf-8).readlines()
print(len(lines))
datas = []
dic_content =
dic_summary =
for line in lines:
ll = line.strip().split(\\t)
if len(ll)<2:
continue
datas.append([ll[0].split( ),ll[1].split( )])
# print(ll[0])
if len(ll[0].split( )) not in dic_content:
dic_content[len(ll[0].split( ))] = 1
else:
dic_content[len(ll[0].split( ))] +=1
if len(ll[1].split( )) not in dic_summary:
dic_summary[len(ll[1].split( ))] = 1
else:
dic_summary[len(ll[1].split( ))] +=1
keys_en = list(dic_content.keys())
keys_en.sort()
count = 0
# print(输入长度统计:)
for k in keys_en:
count += dic_content[k]
print(k,dic_content[k],count/len(lines))
keys_cn = list(dic_summary.keys())
keys_cn.sort()
count = 0
# print(输出长度统计:)
for k in keys_cn:
count += dic_summary[k]
print(k,dic_summary[k],count/len(lines))
en_length = 95
cn_length = 25
输出结果如下图2所示:
(二)、构建英文词表词表
# 构建英文词表
en_vocab =
en_vocab[<pad>], en_vocab[<bos>], en_vocab[<eos>] = 0, 1, 2
idx = 3
for en, cn in datas:
# print(en,cn)
for w in en:
if w not in en_vocab:
en_vocab[w] = idx
idx += 1
for w in cn:
if w not in en_vocab:
en_vocab[w] = idx
idx += 1
print(len(list(en_vocab)))
英文词表长度:71428
输出结果如下图3所示:
(三)、创建数据集
接下来根据词表,我们将会创建一份实际的用于训练的用numpy array组织起来的数据集。
- 所有的句子都通过补充成为了长度相同的句子。
- 对于英文句子(源语言),我们将其反转了过来,这会带来更好的翻译的效果。
- 所创建的padded_cn_label_sents是训练过程中的预测的目标,即,每个英文的当前词去预测下一个词是什么词。
padded_en_sents = []
padded_cn_sents = []
padded_cn_label_sents = []
for en, cn in datas:
if len(en)>en_length:
en = en[:en_length]
if len(cn)>cn_length:
cn = cn[:cn_length]
padded_en_sent = en + [<eos>] + [<pad>] * (en_length - len(en))
#padded_en_sent.reverse()
padded_cn_sent = [<bos>] + cn + [<eos>] + [<pad>] * (cn_length - len(cn))
padded_cn_label_sent = cn + [<eos>] + [<pad>] * (cn_length - len(cn) + 1)
padded_en_sents.append(np.array([en_vocab[w] for w in padded_en_sent]))
padded_cn_sents.append(np.array([en_vocab[w] for w in padded_cn_sent]) )
padded_cn_label_sents.append(np.array([en_vocab[w] for w in padded_cn_label_sent]))
train_en_sents = np.array(padded_en_sents)
train_cn_sents = np.array(padded_cn_sents)
train_cn_label_sents = np.array(padded_cn_label_sents)
print(train_en_sents.shape)
print(train_cn_sents.shape)
print(train_cn_label_sents.shape)
输出结果如下图4所示:
二、构建基于Transformer的机器翻译模型
(一)、定义超参数
- 首先定义超参数,用于后续模型的设计与训练
embedding_size = 128
hidden_size = 512
num_encoder_lstm_layers = 1
vocab_size = len(list(en_vocab))
epochs = 20
batch_size = 16
(二)、Encoder部分
- 使用TransformerEncoder定义Encoder
# encoder: simply learn representation of source sentence
class Encoder(paddle.nn.Layer):
def __init__(self,vocab_size, embedding_size,num_layers=2,head_number=2,middle_units=512):
super(Encoder, self).__init__()
self.emb = paddle.nn.Embedding(vocab_size, embedding_size,)
"""
d_model (int) - 输入输出的维度。
nhead (int) - 多头注意力机制的Head数量。
dim_feedforward (int) - 前馈神经网络中隐藏层的大小。
"""
encoder_layer = paddle.nn.TransformerEncoderLayer(embedding_size, head_number, middle_units)
self.encoder = paddle.nn.TransformerEncoder(encoder_layer, num_layers)
def forward(self, x):
x = self.emb(x)
en_out = self.encoder(x)
return en_out
(三)、Decoder部分
- 使用TransformerDecoder定义Decoder
class Decoder(paddle.nn.Layer):
def __init__(self,vocab_size, embedding_size,num_layers=2,head_number=2,middle_units=512):
super(Decoder, self).__init__()
self.emb = paddle.nn.Embedding(vocab_size, embedding_size)
decoder_layer = paddle.nn.TransformerDecoderLayer(embedding_size, head_number, middle_units)
self.decoder = paddle.nn.TransformerDecoder(decoder_layer, num_layers)
# for computing output logits
self.outlinear =paddle.nn.Linear(embedding_size, vocab_size)
def forward(self, x, encoder_outputs):
x = self.emb(x)
# dec_input, enc_output,self_attn_mask, cross_attn_mask
de_out = self.decoder(x, encoder_outputs)
output = self.outlinear(de_out)
output = paddle.squeeze(output)
return output
三、模型训练
接下来我们开始训练模型。
-
在每个epoch开始之前,我们对训练数据进行了随机打乱。
-
我们通过多次调用atten_decoder,在这里实现了解码时的recurrent循环。
-
teacher forcing策略: 在每次解码下一个词时,我们给定了训练数据当中的真实词作为了预测下一个词时的输入。相应的,你也可以尝试用模型预测的结果作为下一个词的输入。(或者混合使用)
encoder = Encoder(vocab_size, embedding_size)
decoder = Decoder(vocab_size, embedding_size)
opt = paddle.optimizer.Adam(learning_rate=0.0001,
parameters=encoder.parameters() + decoder.parameters())
for epoch in range(epochs):
print("epoch:".format(epoch))
# shuffle training data
perm = np.random.permutation(len(train_en_sents))
train_en_sents_shuffled = train_en_sents[perm]
train_cn_sents_shuffled = train_cn_sents[perm]
train_cn_label_sents_shuffled = train_cn_label_sents[perm]
# print(train_en_sents_shuffled.shape[0],train_en_sents_shuffled.shape[1])
for iteration in range(train_en_sents_shuffled.shape[0] // batch_size):
x_data = train_en_sents_shuffled[(batch_size*iteration):(batch_size*(iteration+1))]
sent = paddle.to_tensor(x_data)
en_repr = encoder(sent)
x_cn_data = train_cn_sents_shuffled[(batch_size*iteration):(batch_size*(iteration+1))]
x_cn_label_data = train_cn_label_sents_shuffled[(batch_size*iteration):(batch_size*(iteration+1))]
loss = paddle.zeros([1])
for i in range( cn_length + 2):
cn_word = paddle.to_tensor(x_cn_data[:,i:i+1])
cn_word_label = paddle.to_tensor(x_cn_label_data[:,i])
logits = decoder(cn_word, en_repr)
step_loss = F.cross_entropy(logits, cn_word_label)
loss += step_loss
loss = loss / (cn_length + 2)
if(iteration % 50 == 0):
print("iter , loss:".format(iteration, loss.numpy()))
loss.backward()
opt.step()
opt.clear_grad()
print("训练完成")
部分输出结果如下图6所示:
四、使用模型进行机器翻译
- 随机从训练集中抽取几句话来进行预测
encoder.eval()
decoder.eval()
num_of_exampels_to_evaluate = 10
indices = np.random.choice(len(train_en_sents), num_of_exampels_to_evaluate, replace=False)
x_data = train_en_sents[indices]
sent = paddle.to_tensor(x_data)
en_repr = encoder(sent)
word = np.array(
[[en_vocab[<bos>]]] * num_of_exampels_to_evaluate
)
word = paddle.to_tensor(word)
decoded_sent = []
for i in range(cn_length + 2):
logits = decoder(word, en_repr)
word = paddle.argmax(logits, axis=1)
decoded_sent.append(word.numpy())
word = paddle.unsqueeze(word, axis=-1)
results = np.stack(decoded_sent, axis=1)
for i in range(num_of_exampels_to_evaluate):
print(---------------------)
en_input = " ".join(datas[indices[i]][0])
ground_truth_translate = "".join(datas[indices[i]][1])
model_translate = ""
for k in results[i]:
w = list(en_vocab)[k]
if w != <pad> and w != <eos>:
model_translate += w
print(en_input)
print("true: ".format(ground_truth_translate))
print("pred: ".format(model_translate))
输出结果如下图7所示:
总结
本系列文章内容为根据清华社出版的《自然语言处理实践》所作的相关笔记和感悟,其中代码均为基于百度飞桨开发,若有任何侵权和不妥之处,请私信于我,定积极配合处理,看到必回!!!
最后,引用本次活动的一句话,来作为文章的结语~( ̄▽ ̄~)~:
【**学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。**】
以上是关于自然语言处理(NLP)基于Transformer的英文自动文摘的主要内容,如果未能解决你的问题,请参考以下文章