全面吃透JAVA Stream流操作,让代码更加的优雅

Posted 架构悟道

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了全面吃透JAVA Stream流操作,让代码更加的优雅相关的知识,希望对你有一定的参考价值。

大家好,又见面啦。

在JAVA中,涉及到对 ​​数组​​、​​Collection​​等集合类中的元素进行操作的时候,通常会通过循环的方式进行逐个处理,或者使用Stream的方式进行处理。

例如,现在有这么一个需求:

从给定句子中返回单词长度大于5的单词列表,按长度倒序输出,最多返回3个

JAVA7及之前的代码中,我们会可以照如下的方式进行实现:

/**
* 【常规方式】
* 从给定句子中返回单词长度大于5的单词列表,按长度倒序输出,最多返回3个
*
* @param sentence 给定的句子,约定非空,且单词之间仅由一个空格分隔
* @return 倒序输出符合条件的单词列表
*/
public List<String> sortGetTop3LongWords(@NotNull String sentence)
// 先切割句子,获取具体的单词信息
String[] words = sentence.split(" ");
List<String> wordList = new ArrayList<>();
// 循环判断单词的长度,先过滤出符合长度要求的单词
for (String word : words)
if (word.length() > 5)
wordList.add(word);


// 对符合条件的列表按照长度进行排序
wordList.sort((o1, o2) -> o2.length() - o1.length());
// 判断list结果长度,如果大于3则截取前三个数据的子list返回
if (wordList.size() > 3)
wordList = wordList.subList(0, 3);

return wordList;

JAVA8及之后的版本中,借助Stream流,我们可以更加优雅的写出如下代码:

/**
* 【Stream方式】
* 从给定句子中返回单词长度大于5的单词列表,按长度倒序输出,最多返回3个
*
* @param sentence 给定的句子,约定非空,且单词之间仅由一个空格分隔
* @return 倒序输出符合条件的单词列表
*/
public List<String> sortGetTop3LongWordsByStream(@NotNull String sentence)
return Arrays.stream(sentence.split(" "))
.filter(word -> word.length() > 5)
.sorted((o1, o2) -> o2.length() - o1.length())
.limit(3)
.collect(Collectors.toList());

直观感受上,​​Stream​​的实现方式代码更加简洁、一气呵成。很多的同学在代码中也经常使用Stream流,但是对Stream流的认知往往也是仅限于会一些简单的 ​​filter​​、​​map​​、​​collect​​等操作,但JAVA的Stream可以适用的场景与能力远不止这些。

全面吃透JAVA

那么问题来了:Stream相较于传统的foreach的方式处理stream,到底有啥优势

这里我们可以先搁置这个问题,先整体全面的了解下Stream,然后再来讨论下这个问题。

笔者结合在团队中多年的代码检视遇到的情况,结合平时项目编码实践经验,对Stream的核心要点与易混淆用法典型使用场景等进行了详细的梳理总结,希望可以帮助大家对Stream有个更全面的认知,也可以更加高效的应用到项目开发中去。

Stream初相识

概括讲,可以将Stream流操作分为3种类型

  • 创建Stream
  • Stream中间处理
  • 终止Steam

全面吃透JAVA

每个Stream管道操作类型都包含若干API方法,先列举下各个API方法的功能介绍。

  • 开始管道

主要负责新建一个Stream流,或者基于现有的数组、List、Set、Map等集合类型对象创建出新的Stream流。

API

功能说明

stream()

创建出一个新的stream串行流对象

parallelStream()

创建出一个可并行执行的stream流对象

Stream.of()

通过给定的一系列元素创建一个新的Stream串行流对象

全面吃透JAVA

  • 中间管道

负责对Stream进行处理操作,并返回一个新的Stream对象,中间管道操作可以进行叠加

API

功能说明

filter()

按照条件过滤符合要求的元素, 返回新的stream流

map()

将已有元素转换为另一个对象类型,一对一逻辑,返回新的stream流

flatMap()

将已有元素转换为另一个对象类型,一对多逻辑,即原来一个元素对象可能会转换为1个或者多个新类型的元素,返回新的stream流

limit()

仅保留集合前面指定个数的元素,返回新的stream流

skip()

跳过集合前面指定个数的元素,返回新的stream流

concat()

将两个流的数据合并起来为1个新的流,返回新的stream流

distinct()

对Stream中所有元素进行去重,返回新的stream流

sorted()

对stream中所有的元素按照指定规则进行排序,返回新的stream流

peek()

对stream流中的每个元素进行逐个遍历处理,返回处理后的stream流

全面吃透JAVA

  • 终止管道

顾名思义,通过终止管道操作之后,Stream流将会结束,最后可能会执行某些逻辑处理,或者是按照要求返回某些执行后的结果数据。

API

功能说明

count()

返回stream处理后最终的元素个数

max()

返回stream处理后的元素最大值

min()

返回stream处理后的元素最小值

findFirst()

找到第一个符合条件的元素时则终止流处理

findAny()

找到任何一个符合条件的元素时则退出流处理,这个对于串行流时与findFirst相同,对于并行流时比较高效,任何分片中找到都会终止后续计算逻辑

anyMatch()

返回一个boolean值,类似于isContains(),用于判断是否有符合条件的元素

allMatch()

返回一个boolean值,用于判断是否所有元素都符合条件

noneMatch()

返回一个boolean值, 用于判断是否所有元素都不符合条件

collect()

将流转换为指定的类型,通过Collectors进行指定

toArray()

将流转换为数组

iterator()

将流转换为Iterator对象

foreach()

无返回值,对元素进行逐个遍历,然后执行给定的处理逻辑

Stream方法使用

map与flatMap

​map​​与 ​​flatMap​​都是用于转换已有的元素为其它元素,区别点在于:

  • map必须是一对一的,即每个元素都只能转换为1个新的元素
  • flatMap可以是一对多的,即每个元素都可以转换为1个或者多个新的元素

全面吃透JAVA

比如:有一个字符串ID列表,现在需要将其转为User对象列表。可以使用map来实现:

/**
* 演示map的用途:一对一转换
*/
public void stringToIntMap()
List<String> ids = Arrays.asList("205", "105", "308", "469", "627", "193", "111");
// 使用流操作
List<User> results = ids.stream()
.map(id ->
User user = new User();
user.setId(id);
return user;
)
.collect(Collectors.toList());
System.out.println(results);

执行之后,会发现每一个元素都被转换为对应新的元素,但是前后总元素个数是一致的:

[Userid=205, 
Userid=105,
Userid=308,
Userid=469,
Userid=627,
Userid=193,
Userid=111]

全面吃透JAVA

再比如:现有一个句子列表,需要将句子中每个单词都提取出来得到一个所有单词列表。这种情况用map就搞不定了,需要 ​​flatMap​​上场了:

public void stringToIntFlatmap() 
List<String> sentences = Arrays.asList("hello world","Jia Gou Wu Dao");
// 使用流操作
List<String> results = sentences.stream()
.flatMap(sentence -> Arrays.stream(sentence.split(" ")))
.collect(Collectors.toList());
System.out.println(results);

执行结果如下,可以看到结果列表中元素个数是比原始列表元素个数要多的:

[hello, world, Jia, Gou, Wu, Dao]

这里需要补充一句,​​flatMap​​操作的时候其实是先每个元素处理并返回一个新的Stream,然后将多个Stream展开合并为了一个完整的新的Stream,如下:

全面吃透JAVA

peek和foreach方法

​peek​​和 ​​foreach​​,都可以用于对元素进行遍历然后逐个的进行处理。

但根据前面的介绍,peek属于中间方法,而foreach属于终止方法。这也就意味着peek只能作为管道中途的一个处理步骤,而没法直接执行得到结果,其后面必须还要有其它终止操作的时候才会被执行;而foreach作为无返回值的终止方法,则可以直接执行相关操作。

public void testPeekAndforeach() 
List<String> sentences = Arrays.asList("hello world","Jia Gou Wu Dao");
// 演示点1: 仅peek操作,最终不会执行
System.out.println("----before peek----");
sentences.stream().peek(sentence -> System.out.println(sentence));
System.out.println("----after peek----");
// 演示点2: 仅foreach操作,最终会执行
System.out.println("----before foreach----");
sentences.stream().forEach(sentence -> System.out.println(sentence));
System.out.println("----after foreach----");
// 演示点3: peek操作后面增加终止操作,peek会执行
System.out.println("----before peek and count----");
sentences.stream().peek(sentence -> System.out.println(sentence)).count();
System.out.println("----after peek and count----");

输出结果可以看出,peek独自调用时并没有被执行、但peek后面加上终止操作之后便可以被执行,而foreach可以直接被执行:

----before peek----
----after peek----
----before foreach----
hello world
Jia Gou Wu Dao
----after foreach----
----before peek and count----
hello world
Jia Gou Wu Dao
----after peek and count----

全面吃透JAVA

filter、sorted、distinct、limit

这几个都是常用的Stream的中间操作方法,具体的方法的含义在上面的表格里面有说明。具体使用的时候,可以根据需要选择一个或者多个进行组合使用,或者同时使用多个相同方法的组合

public void testGetTargetUsers() 
List<String> ids = Arrays.asList("205","10","308","49","627","193","111", "193");
// 使用流操作
List<Dept> results = ids.stream()
.filter(s -> s.length() > 2)
.distinct()
.map(Integer::valueOf)
.sorted(Comparator.comparingInt(o -> o))
.limit(3)
.map(id -> new Dept(id))
.collect(Collectors.toList());
System.out.println(results);

上面的代码片段的处理逻辑很清晰:

  1. 使用filter过滤掉不符合条件的数据
  2. 通过distinct对存量元素进行去重操作
  3. 通过map操作将字符串转成整数类型
  4. 借助sorted指定按照数字大小正序排列
  5. 使用limit截取排在前3位的元素
  6. 又一次使用map将id转为Dept对象类型
  7. 使用collect终止操作将最终处理后的数据收集到list中

输出结果:

[Deptid=111,  Deptid=193,  Deptid=205]

全面吃透JAVA

简单结果终止方法

按照前面介绍的,终止方法里面像 ​​count​​、​​max​​、​​min​​、​​findAny​​、​​findFirst​​、​​anyMatch​​、​​allMatch​​、​​noneMatch​​等方法,均属于这里说的简单结果终止方法。所谓简单,指的是其结果形式是数字、布尔值或者Optional对象值等。

public void testSimpleStopOptions() 
List<String> ids = Arrays.asList("205", "10", "308", "49", "627", "193", "111", "193");
// 统计stream操作后剩余的元素个数
System.out.println(ids.stream().filter(s -> s.length() > 2).count());
// 判断是否有元素值等于205
System.out.println(ids.stream().filter(s -> s.length() > 2).anyMatch("205"::equals));
// findFirst操作
ids.stream().filter(s -> s.length() > 2)
.findFirst()
.ifPresent(s -> System.out.println("findFirst:" + s));

执行后结果为:

6
true
findFirst:205

全面吃透JAVA

避坑提醒

这里需要补充提醒下,一旦一个Stream被执行了终止操作之后,后续便不可以再读这个流执行其他的操作了,否则会报错,看下面示例:

public void testHandleStreamAfterClosed() 
List<String> ids = Arrays.asList("205", "10", "308", "49", "627", "193", "111", "193");
Stream<String> stream = ids.stream().filter(s -> s.length() > 2);
// 统计stream操作后剩余的元素个数
System.out.println(stream.count());
System.out.println("-----下面会报错-----");
// 判断是否有元素值等于205
try
System.out.println(stream.anyMatch("205"::equals));
catch (Exception e)
e.printStackTrace();

System.out.println("-----上面会报错-----");

执行的时候,结果如下:

6
-----下面会报错-----
java.lang.IllegalStateException: stream has already been operated upon or closed
at java.util.stream.AbstractPipeline.eval(AbstractPipeline.java:229)
at java.util.stream.ReferencePipeline.anyMatch(ReferencePipeline.java:449)
at com.veezean.skills.stream.StreamService.testHandleStreamAfterClosed(StreamService.java:153)
at com.veezean.skills.stream.StreamService.main(StreamService.java:176)
-----上面会报错-----

因为stream已经被执行 ​​count()​​终止方法了,所以对stream再执行 ​​anyMatch​​方法的时候,就会报错 ​​stream has already been operated upon or closed​​,这一点在使用的时候需要特别注意。

全面吃透JAVA

结果收集终止方法

因为Stream主要用于对集合数据的处理场景,所以除了上面几种获取简单结果的终止方法之外,更多的场景是获取一个集合类的结果对象,比如List、Set或者HashMap等。

这里就需要 ​​collect​​方法出场了,它可以支持生成如下类型的结果数据:

  • 一个​​集合类​​,比如List、Set或者HashMap等
  • StringBuilder对象,支持将多个​​字符串进行拼接​​处理并输出拼接后结果
  • 一个可以记录个数或者计算总和的对象(​​数据批量运算统计​​)

全面吃透JAVA

生成集合

应该算是collect最常被使用到的一个场景了:

public void testCollectStopOptions() 
List<Dept> ids = Arrays.asList(new Dept(17), new Dept(22), new Dept(23));
// collect成list
List<Dept> collectList = ids.stream().filter(dept -> dept.getId() > 20)
.collect(Collectors.toList());
System.out.println("collectList:" + collectList);
// collect成Set
Set<Dept> collectSet = ids.stream().filter(dept -> dept.getId() > 20)
.collect(Collectors.toSet());
System.out.println("collectSet:" + collectSet);
// collect成HashMap,key为id,value为Dept对象
Map<Integer, Dept> collectMap = ids.stream().filter(dept -> dept.getId() > 20)
.collect(Collectors.toMap(Dept::getId, dept -> dept));
System.out.println("collectMap:" + collectMap);

结果如下:

collectList:[Deptid=22, Deptid=23]
collectSet:[Deptid=23, Deptid=22]
collectMap:22=Deptid=22, 23=Deptid=23

全面吃透JAVA

生成拼接字符串

将一个List或者数组中的值拼接到一个字符串里并以逗号分隔开,这个场景相信大家都不陌生吧?

如果通过 ​​for​​循环和 ​​StringBuilder​​去循环拼接,还得考虑下最后一个逗号如何处理的问题,很繁琐:

public void testForJoinStrings() 
List<String> ids = Arrays.asList("205", "10", "308", "49", "627", "193", "111", "193");
StringBuilder builder = new StringBuilder();
for (String id : ids)
builder.append(id).append(,);

// 去掉末尾多拼接的逗号
builder.deleteCharAt(builder.length() - 1);
System.out.println("拼接后:" + builder.toString());

但是现在有了Stream,使用 ​​collect​​可以轻而易举的实现:

public void testCollectJoinStrings() 
List<String> ids = Arrays.asList("205", "10", "308", "49", "627", "193", "111", "193");
String joinResult = ids.stream().collect(Collectors.joining(","));
System.out.println("拼接后:" + joinResult);

两种方式都可以得到完全相同的结果,但Stream的方式更优雅:

拼接后:205,10,308,49,627,193,111,193

全面吃透JAVA

数据批量数学运算

还有一种场景,实际使用的时候可能会比较少,就是使用collect生成数字数据的总和信息,也可以了解下实现方式:

public void testNumberCalculate() 
List<Integer> ids = Arrays.asList(10, 20, 30, 40, 50);
// 计算平均值
Double average = ids.stream().collect(Collectors.averagingInt(value -> value));
System.out.println("平均值:" + average);
// 数据统计信息
IntSummaryStatistics summary = ids.stream().collect(Collectors.summarizingInt(value -> value));
System.out.println("数据统计信息: " + summary);

上面的例子中,使用collect方法来对list中元素值进行数学运算,结果如下:

平均值:30.0
总和: IntSummaryStatisticscount=5, sum=150, min=10, average=30.000000, max=50

全面吃透JAVA

并行Stream

机制说明

使用并行流,可以有效利用计算机的多CPU硬件,提升逻辑的执行速度。并行流通过将一整个stream划

以上是关于全面吃透JAVA Stream流操作,让代码更加的优雅的主要内容,如果未能解决你的问题,请参考以下文章

全面吃透JAVA Stream流操作,让代码更加的优雅

讲透JAVA Stream的collect用法与原理,远比你想象的更强大

Java8实战之Stream

Java8 Stream流如何操作集合,一文带你了解!

Java8 Stream流如何操作集合,一文带你了解!

Java高阶进阶之Java函数式编程-Stream流-Lambda表达式