如何实现gpio口模式的配置?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何实现gpio口模式的配置?相关的知识,希望对你有一定的参考价值。

一、 STM32的输入输出管脚有下面8种(4输入 2输出 2复用输出)可能的配置:\x0d\x0a\x0d\x0a ① 浮空输入_IN_FLOATING\x0d\x0a\x0d\x0a ② 带上拉输入_IPU \x0d\x0a\x0d\x0a ③ 带下拉输入_IPD \x0d\x0a\x0d\x0a ④ 模拟输入_AIN\x0d\x0a\x0d\x0a ⑤ 开漏输出_OUT_OD \x0d\x0a\x0d\x0a ⑥ 推挽输出_OUT_PP\x0d\x0a\x0d\x0a ⑦ 复用功能的推挽输出_AF_PP\x0d\x0a\x0d\x0a ⑧ 复用功能的开漏输出_AF_OD\x0d\x0a\x0d\x0a 1.1 I/O口的输出模式下,有3种输出速度可选(2MHz、10MHz和50MHz),这个速度是指I/O口驱动电路的响应速度而不是输出信号的速度,输出信号的速度与程序有关(芯片内部在I/O口 的输出部分安排了多个响应速度不同的输出驱动电路,用户可以根据自己的需要选择合适的驱动电路)。通过选择速度来选择不同的输出驱动模块,达到最佳的噪声控制和降低功耗的目的。高频的驱动电路,噪声也高,当不需要高的输出频率时,请选用低频驱动电路,这样非常有利于提高系统的EMI性能。当然如果要输出较高频率的信号,但却选用了较低频率的驱动模块,很可能会得到失真的输出信号。\x0d\x0a\x0d\x0a 输出速度又称输出驱动电路的响应速度,可理解为:输出驱动电路的带宽,即一个驱动电路可以不失真地通过信号的最大频率。\x0d\x0a\x0d\x0a 如果一个信号的频率超过了驱动电路的响应速度,就有可能信号失真。如果信号频率为10MHz,而你配置了2MHz的带宽,则10MHz的方波很可能就变成了正弦波。就好比是公路的设计时速,汽车速度低于设计时速时,可以平稳地运行,如果超过设计时速就会颠簸,甚至翻车。\x0d\x0a\x0d\x0a 关键是: GPIO的引脚速度跟应用相匹配,速度配置越高,噪声越大,功耗越大。\x0d\x0a\x0d\x0a 带宽速度高的驱动器耗电大、噪声也大,带宽低的驱动器耗电小、噪声也小。使用合适的驱动器可以降低功耗和噪声。\x0d\x0a GPIO的引脚速度跟应用匹配(推荐10倍以上)。比如:\x0d\x0a\x0d\x0a 1.1.1 对于串口,假如最大波特率只需115.2k,那么用2M的GPIO的引脚速度就够了,既省电也噪声小。\x0d\x0a\x0d\x0a 1.1.2 对于I2C接口,假如使用400k波特率,若想把余量留大些,那么用2M的GPIO的引脚速度或许不够,这时可以选用10M的GPIO引脚速度。\x0d\x0a\x0d\x0a 1.1.3 对于SPI接口,假如使用18M或9M波特率,用10M的GPIO的引脚速度显然不够了,需要选用50M的GPIO的引脚速度。\x0d\x0a\x0d\x0a 1.2 GPIO口设为输入时,输出驱动电路与端口是断开,所以输出速度配置无意义。\x0d\x0a\x0d\x0a 1.3 在复位期间和刚复位后,复用功能未开启,I/O端口被配置成浮空输入模式。\x0d\x0a\x0d\x0a 1.4 所有端口都有外部中断能力。为了使用外部中断线,端口必须配置成输入模式。\x0d\x0a\x0d\x0a 1.5 GPIO口的配置具有上锁功能,当配置好GPIO口后,可以通过程序锁住配置组合,直到下次芯片复位才能解锁。\x0d\x0a\x0d\x0a二、GPIO的翻转速度指:输入/输出寄存器的0 ,1 值反映到外部引脚(APB2上)高低电平的速度.手册上指出GPIO最大翻转速度可达18MHz。通过简单的程序测试,用示波器观察到的翻转时间是综合的时间,包括取指令的时间、指令执行的时间、指令执行后信号传递到寄存器的时间(这其中可能经过很多环节,比如AHB、APB、总线仲裁等),最后才是信号从寄存器传输到引脚所经历的时间。如有上拉电阻,其阻值越大,RC延时越大,即逻辑电平转换的速度越慢,功耗越大。 \x0d\x0a\x0d\x0a三、在STM32中如何配置片内外设使用的IO端口\x0d\x0a\x0d\x0a 首先,一个外设经过 ①配置输入的时钟和 ②初始化后即被激活(开启);③如果使用该外设的输入输出管脚,则需要配置相应的GPIO端口(否则该外设对应的输入输出管脚可以做普通GPIO管脚使用);④再对外设进行详细配置。\x0d\x0a\x0d\x0a 对应到外设的输入输出功能有下述三种情况:\x0d\x0a\x0d\x0a ① 外设对应的管脚为输出:需要根据外围电路的配置选择对应的管脚为复用功能的推挽输出或复用功能的开漏输出。\x0d\x0a ② 外设对应的管脚为输入:则根据外围电路的配置可以选择浮空输入、带上拉输入或带下拉输入。\x0d\x0a ③ ADC对应的管脚:配置管脚为模拟输入。\x0d\x0a\x0d\x0a 如果把端口配置成复用输出功能,则引脚和输出寄存器断开,并和片上外设的输出信号连接。将管脚配置成复用输出功能后,如果外设没有被激活,那么它的输出将不确定。\x0d\x0a\x0d\x0a四、 通用IO端口(GPIO)初始化\x0d\x0a\x0d\x0a 4.1 GPIO初始化\x0d\x0a\x0d\x0a 41.1 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | B | C, ENABLE):使能APB2总线外设时钟;\x0d\x0a\x0d\x0a 41.2 RCC_ APB2PeriphResetCmd (RCC_APB2Periph_GPIOA | B | C, DISABLE):释放GPIO复位。\x0d\x0a\x0d\x0a 4.2 置各个PIN端口(模拟输入_AIN、输入浮空_IN_FLOATING、输入上拉_IPU、输入下拉_IPD、开漏输出_OUT_OD、推挽式输出_OUT_PP、推挽式复用输出_AF_PP、开漏复用输出_AF_OD)。\x0d\x0a\x0d\x0a 4.3GPIO初始化完成。\x0d\x0a\x0d\x0a五、 的GPIO操作函数\x0d\x0a\x0d\x0auint8_t GPIO_ReadInputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);//读GPIO某一位的输入\x0d\x0a\x0d\x0auint16_t GPIO_ReadInputData(GPIO_TypeDef* GPIOx);//读GPIO的输入\x0d\x0a\x0d\x0auint8_t GPIO_ReadOutputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);//读GPIO某一位的输出\x0d\x0a\x0d\x0auint16_t GPIO_ReadOutputData(GPIO_TypeDef* GPIOx);//读GPIO的输出\x0d\x0a\x0d\x0avoid GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);//将GPIO的某个位置位\x0d\x0a\x0d\x0avoid GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);//将GPIO的某个位复位\x0d\x0a\x0d\x0avoid GPIO_WriteBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, BitAction BitVal);//写GPIO的某个位\x0d\x0a\x0d\x0avoid GPIO_Write(GPIO_TypeDef* GPIOx, uint16_t PortVal);//写GPIO\x0d\x0a\x0d\x0a 六、管脚的复用功能 重映射\x0d\x0a\x0d\x0a1、复用功能:内置外设是与I/O口共用引出管脚(不同的功能对应同一管脚)\x0d\x0a\x0d\x0aSTM32 所有内置外设的外部引脚都是与标准GPIO引脚复用的,如果有多个复用功能模块对应同一个引脚,只能使能其中之一,其它模块保持非使能状态。\x0d\x0a\x0d\x0a2、重映射功能:复用功能的引出脚可以通过重映射,从不同的I/O管脚引出,即复用功 能的引出脚位是可通过程序改变到其他的引脚上!\x0d\x0a\x0d\x0a直接好处:PCB电路板的设计人员可以在需要的情况下,不必把某些信号在板上绕一大圈完成联接,方便了PCB的设计同时潜在地减少了信号的交叉干扰。\x0d\x0a\x0d\x0a如:USART1: 0: 没有重映像(TX/PA9,RX/PA10); 1: 重映像(TX/PB6,RX/PB7)。\x0d\x0a\x0d\x0a(参考AFIO_MAPR寄存器介绍)[0,1为一寄存器的bit值]\x0d\x0a\x0d\x0a【注】 下述复用功能的引出脚具有重映射功能:\x0d\x0a\x0d\x0a - 晶体振荡器的引脚在不接晶体时,可以作为普通I/O口\x0d\x0a\x0d\x0a - CAN模块; - JTAG调试接口;- 大部分定时器的引出接口; - 大部分USART引出接口\x0d\x0a\x0d\x0a - I2C1的引出接口; - SPI1的引出接口;\x0d\x0a\x0d\x0a举例:对于STM32F103VBT6,47引脚为PB10,它的复用功能是I2C2_SCL和 USART3_TX,表示在上电之后它的默认功能为PB10,而I2C2的SCL和USART3的TX为它的复用功能;另外在TIM2的引脚重映射后,TIM2_CH3也成为这个引脚的复用功能。\x0d\x0a\x0d\x0a(1)要使用STM32F103VBT6的47、48脚的USART3功能,则需要配置47脚为复用推挽输出或复用开漏输出,配置48脚为某种输入模式,同时使能USART3并保持I2C2的非使能状态。\x0d\x0a\x0d\x0a(2)使用STM32F103VBT6的47脚作为TIM2_CH3,则需要对TIM2进行重映射,然后再按复用功能的方式配置对应引脚。 参考技术A 一、 STM32的输入输出管脚有下面8种(4输入 2输出 2复用输出)可能的配置:

① 浮空输入_IN_FLOATING

② 带上拉输入_IPU

③ 带下拉输入_IPD

④ 模拟输入_AIN

⑤ 开漏输出_OUT_OD

⑥ 推挽输出_OUT_PP

⑦ 复用功能的推挽输出_AF_PP

⑧ 复用功能的开漏输出_AF_OD

1.1 I/O口的输出模式下,有3种输出速度可选(2MHz、10MHz和50MHz),这个速度是指I/O口驱动电路的响应速度而不是输出信号的速度,输出信号的速度与程序有关(芯片内部在I/O口 的输出部分安排了多个响应速度不同的输出驱动电路,用户可以根据自己的需要选择合适的驱动电路)。通过选择速度来选择不同的输出驱动模块,达到最佳的噪声控制和降低功耗的目的。高频的驱动电路,噪声也高,当不需要高的输出频率时,请选用低频驱动电路,这样非常有利于提高系统的EMI性能。当然如果要输出较高频率的信号,但却选用了较低频率的驱动模块,很可能会得到失真的输出信号。

输出速度又称输出驱动电路的响应速度,可理解为:输出驱动电路的带宽,即一个驱动电路可以不失真地通过信号的最大频率。

如果一个信号的频率超过了驱动电路的响应速度,就有可能信号失真。如果信号频率为10MHz,而你配置了2MHz的带宽,则10MHz的方波很可能就变成了正弦波。就好比是公路的设计时速,汽车速度低于设计时速时,可以平稳地运行,如果超过设计时速就会颠簸,甚至翻车。

关键是: GPIO的引脚速度跟应用相匹配,速度配置越高,噪声越大,功耗越大。

带宽速度高的驱动器耗电大、噪声也大,带宽低的驱动器耗电小、噪声也小。使用合适的驱动器可以降低功耗和噪声。
GPIO的引脚速度跟应用匹配(推荐10倍以上)。比如:

1.1.1 对于串口,假如最大波特率只需115.2k,那么用2M的GPIO的引脚速度就够了,既省电也噪声小。

1.1.2 对于I2C接口,假如使用400k波特率,若想把余量留大些,那么用2M的GPIO的引脚速度或许不够,这时可以选用10M的GPIO引脚速度。

1.1.3 对于SPI接口,假如使用18M或9M波特率,用10M的GPIO的引脚速度显然不够了,需要选用50M的GPIO的引脚速度。

1.2 GPIO口设为输入时,输出驱动电路与端口是断开,所以输出速度配置无意义。

1.3 在复位期间和刚复位后,复用功能未开启,I/O端口被配置成浮空输入模式。

1.4 所有端口都有外部中断能力。为了使用外部中断线,端口必须配置成输入模式。

1.5 GPIO口的配置具有上锁功能,当配置好GPIO口后,可以通过程序锁住配置组合,直到下次芯片复位才能解锁。

二、GPIO的翻转速度指:输入/输出寄存器的0 ,1 值反映到外部引脚(APB2上)高低电平的速度.手册上指出GPIO最大翻转速度可达18MHz。通过简单的程序测试,用示波器观察到的翻转时间是综合的时间,包括取指令的时间、指令执行的时间、指令执行后信号传递到寄存器的时间(这其中可能经过很多环节,比如AHB、APB、总线仲裁等),最后才是信号从寄存器传输到引脚所经历的时间。如有上拉电阻,其阻值越大,RC延时越大,即逻辑电平转换的速度越慢,功耗越大。

三、在STM32中如何配置片内外设使用的IO端口

首先,一个外设经过 ①配置输入的时钟和 ②初始化后即被激活(开启);③如果使用该外设的输入输出管脚,则需要配置相应的GPIO端口(否则该外设对应的输入输出管脚可以做普通GPIO管脚使用);④再对外设进行详细配置。

对应到外设的输入输出功能有下述三种情况:

① 外设对应的管脚为输出:需要根据外围电路的配置选择对应的管脚为复用功能的推挽输出或复用功能的开漏输出。
② 外设对应的管脚为输入:则根据外围电路的配置可以选择浮空输入、带上拉输入或带下拉输入。
③ ADC对应的管脚:配置管脚为模拟输入。

如果把端口配置成复用输出功能,则引脚和输出寄存器断开,并和片上外设的输出信号连接。将管脚配置成复用输出功能后,如果外设没有被激活,那么它的输出将不确定。

四、 通用IO端口(GPIO)初始化

4.1 GPIO初始化

41.1 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | B | C, ENABLE):使能APB2总线外设时钟;

41.2 RCC_ APB2PeriphResetCmd (RCC_APB2Periph_GPIOA | B | C, DISABLE):释放GPIO复位。

4.2 置各个PIN端口(模拟输入_AIN、输入浮空_IN_FLOATING、输入上拉_IPU、输入下拉_IPD、开漏输出_OUT_OD、推挽式输出_OUT_PP、推挽式复用输出_AF_PP、开漏复用输出_AF_OD)。

4.3GPIO初始化完成。

五、 的GPIO操作函数

uint8_t GPIO_ReadInputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);//读GPIO某一位的输入

uint16_t GPIO_ReadInputData(GPIO_TypeDef* GPIOx);//读GPIO的输入

uint8_t GPIO_ReadOutputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);//读GPIO某一位的输出

uint16_t GPIO_ReadOutputData(GPIO_TypeDef* GPIOx);//读GPIO的输出

void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);//将GPIO的某个位置位

void GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);//将GPIO的某个位复位

void GPIO_WriteBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, BitAction BitVal);//写GPIO的某个位

void GPIO_Write(GPIO_TypeDef* GPIOx, uint16_t PortVal);//写GPIO

六、管脚的复用功能 重映射

1、复用功能:内置外设是与I/O口共用引出管脚(不同的功能对应同一管脚)

STM32 所有内置外设的外部引脚都是与标准GPIO引脚复用的,如果有多个复用功能模块对应同一个引脚,只能使能其中之一,其它模块保持非使能状态。

2、重映射功能:复用功能的引出脚可以通过重映射,从不同的I/O管脚引出,即复用功 能的引出脚位是可通过程序改变到其他的引脚上!

直接好处:PCB电路板的设计人员可以在需要的情况下,不必把某些信号在板上绕一大圈完成联接,方便了PCB的设计同时潜在地减少了信号的交叉干扰。

如:USART1: 0: 没有重映像(TX/PA9,RX/PA10); 1: 重映像(TX/PB6,RX/PB7)。

(参考AFIO_MAPR寄存器介绍)[0,1为一寄存器的bit值]

【注】 下述复用功能的引出脚具有重映射功能:

- 晶体振荡器的引脚在不接晶体时,可以作为普通I/O口

- CAN模块; - JTAG调试接口;- 大部分定时器的引出接口; - 大部分USART引出接口

- I2C1的引出接口; - SPI1的引出接口;

举例:对于STM32F103VBT6,47引脚为PB10,它的复用功能是I2C2_SCL和 USART3_TX,表示在上电之后它的默认功能为PB10,而I2C2的SCL和USART3的TX为它的复用功能;另外在TIM2的引脚重映射后,TIM2_CH3也成为这个引脚的复用功能。

(1)要使用STM32F103VBT6的47、48脚的USART3功能,则需要配置47脚为复用推挽输出或复用开漏输出,配置48脚为某种输入模式,同时使能USART3并保持I2C2的非使能状态。

(2)使用STM32F103VBT6的47脚作为TIM2_CH3,则需要对TIM2进行重映射,然后再按复用功能的方式配置对应引脚。

3.STC15W408AS单片机GPIO

一、GPIO口介绍

  STC15W408AS单片机有14个I/O口。其所有I/O口均可由软件配置成4种类型。4种类型分别为:准双向口/弱上拉(标准8051输出模式)、推挽输出/强上拉、高阻输入(电流既不能流入也不能流出)或开漏输出功能。每个口由2个控制寄存器中的相应位控制每个引脚工作类型。STC15系列单片机的I/O口上电复位后为准双向口/弱上拉(传统8051的I/O口)模式。每个I/O口驱动能力均可达到20mA,但40-pin及40-pin以上单片机的整个芯片最大不要超过120mA,20-pin以上及32-pin以下(包括32-pin)单片机的整个芯片最大不要超过90mA。

P3口类似。

注意:
  虽然每个I/O口在弱上拉(准双向口)/强推挽输出/开漏模式 是要加限流电阻,如1K,560Ω,472Ω等),在强推挽输出时能输出20mA的拉电流(也要加限流电阻),但整个芯片的工作电流推荐不要超过90m A, 即从MCU-VCC的电流建议不要超过90mA,从MCU-Gnd流出电流建议不要超过90mA,整体流入/流出电流都不要超过90mA。

二、GPIO工作模式

2.1 准双向口(弱上拉)输出配置

  准双向口(弱上拉)输出类型可用作输出和输入功能而不需重新配置端口 为当端口输出为1时驱动能力很弱,允许外部装置将其拉低。当引脚输出为低时,它的驱动能力很强,可吸收相当大的电流。准双向口有3个上拉晶体管适应不同的需要。
  在3个上拉晶体管中,有1个上拉晶体管称为"弱上拉",当端口 为1时打开。此上拉提供基本驱动电流使准双向口输出为1。如果一个引脚输出为1而由外部装置下拉到低时,弱上拉关闭而"极弱上拉"维持开状态,为了把这个引脚强拉为低,外部装置必须有足够的灌电流能力使引脚上的电压降到门槛电压以下。 对于5V单片机,"弱上拉"晶体管的电流约250uA;对于3.3V单片机,“弱上拉"晶体管的电流约150uA。
  第2个上拉晶体管,称为"极弱上拉”,当端口锁存为1时打开。当引脚悬空时,这个极弱
的上拉源产生很弱的上拉电流将引脚上拉为高电平。 对于5V单片机,"极弱上拉"晶体管的电流约18uA;对于3.3V单片机,“极弱上拉"晶体管的电流约5uA。
  第3个上拉晶体管称为"强上拉”。当端口锁存器由0到1跳变时,这个上拉用来加快准双向口由逻辑0到逻辑1转换。当发生这种情况时,强上拉打开约2个时钟以使引脚能够迅速地上拉到高电平。
准双向口(弱上拉) 输入如图示:

2.2 强推挽输出配置

  强推挽输出配置的下拉结构与开漏输出以及准双向口的下拉结构相同,但当锁存器为1时
提供持续的强上拉。推挽模式一般用于需要更大驱动电流的情况。
强推挽引脚配置如图所示:

2.3 高阻输入(电流既不能输入也不能输出)配置

  高阻输入口配置如下图所示:
输入口带有一个施密特触发输入以及一个干扰抑制电路。

2.4 开漏输出配置(若外加上拉电阻,也可读外部状态或输出高电平)

  开漏模式既可读外部状态也可对外输出(高电平或低电平)。如要正确读取外部状态或需要对外输出高电平,需外加上拉电阻。
  当端口锁存器为0时,开漏输出关闭所有上拉晶体管。当作为一个逻辑输出高电平种配置方式必须有外部上拉,一般通过电阻外接到Vcc。如果外部有上拉电阻,开漏的I/O口还可读外部状态,即此时被配置为开漏模式的I/O口还可作为输入I/O口。 这种方式的下拉与准双向口相同。输出端口配置如下图所示。
  开漏端口带有一个施密特触发输入以及一个干扰抑制电路。

以上是关于如何实现gpio口模式的配置?的主要内容,如果未能解决你的问题,请参考以下文章

如何将GPIO口配置为上拉,下拉输入

CC2530 GPIO 控制LED灯

初识GPIO流水灯

初识GPIO流水灯

编写用DSP的GPIO口实现控制交通灯程序

STM32的GPIO口的几种输入输出模式的区别和适用场合,有详细的解说吗