图文详解:如何做到操作系统和并发同步的结合?

Posted 是温度呀

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了图文详解:如何做到操作系统和并发同步的结合?相关的知识,希望对你有一定的参考价值。

图文详解:如何做到操作系统和并发同步的结合?_java


因为 i 是静态变量,没有经过任何线程安全措施的保护,多个线程会并发修改 i 的值,所以我们认为 i 不是线程安全的,导致这种结果的出现是由于 aThread 和 bThread 中读取的 i 值彼此不可见,所以这是由于 可见性 导致的线程安全问题。

原子性问题

看起来很普通的一段程序却因为两个线程 aThread 和 bThread 交替执行产生了不同的结果。但是根源不是因为创建了两个线程导致的,多线程只是产生线程安全性的必要条件,最终的根源出现在 i++ 这个操作上。

这个操作怎么了?这不就是一个给 i 递增的操作吗?也就是 i++ => i = i + 1,这怎么就会产生问题了?

因为 i++ 不是一个 原子性 操作,仔细想一下,i++ 其实有三个步骤,读取 i 的值,执行 i + 1 操作,然后把 i + 1 得出的值重新赋给 i(将结果写入内存)。

当两个线程开始运行后,每个线程都会把 i 的值读入到 CPU 缓存中,然后执行 + 1 操作,再把 + 1 之后的值写入内存。因为线程间都有各自的虚拟机栈和程序计数器,他们彼此之间没有数据交换,所以当 aThread 执行 + 1 操作后,会把数据写入到内存,同时 bThread 执行 + 1 操作后,也会把数据写入到内存,因为 CPU 时间片的执行周期是不确定的,所以会出现当 aThread 还没有把数据写入内存时,bThread 就会读取内存中的数据,然后执行 + 1操作,再写回内存,从而覆盖 i 的值,导致 aThread 所做的努力白费。


图文详解:如何做到操作系统和并发同步的结合?_java_02


为什么上面的线程切换会出现问题呢?

我们先来考虑一下正常情况下(即不会出现线程安全性问题的情况下)两条线程的执行顺序

图文详解:如何做到操作系统和并发同步的结合?_java_03


可以看到,当 aThread 在执行完整个 i++ 的操作后,操作系统对线程进行切换,由 aThread -> bThread,这是最理想的操作,一旦操作系统在任意 读取/增加/写入 阶段产生线程切换,都会产生线程安全问题。例如如下图所示

图文详解:如何做到操作系统和并发同步的结合?_java_04


最开始的时候,内存中 i = 0,aThread 读取内存中的值并把它读取到自己的寄存器中,执行 +1 操作,此时发生线程切换,bThread 开始执行,读取内存中的值并把它读取到自己的寄存器中,此时发生线程切换,线程切换至 aThread 开始运行,aThread 把自己寄存器的值写回到内存中,此时又发生线程切换,由 aThread -> bThread,线程 bThread 把自己寄存器的值 +1 然后写回内存,写完后内存中的值不是 2 ,而是 1, 内存中的 i 值被覆盖了。

我们上面提到 原子性 这个概念,那么什么是原子性呢?

并发编程的原子性操作是完全独立于任何其他进程运行的操作,原子操作多用于现代操作系统和并行处理系统中。

原子操作通常在内核中使用,因为内核是操作系统的主要组件。但是,大多数计算机硬件,编译器和库也提供原子性操作。

在加载和存储中,计算机硬件对存储器字进行读取和写入。为了对值进行匹配、增加或者减小操作,一般通过原子操作进行。在原子操作期间,处理器可以在同一数据传输期间完成读取和写入。 这样,其他输入/输出机制或处理器无法执行存储器读取或写入任务,直到原子操作完成为止。

简单来讲,就是原子操作要么全部执行,要么全部不执行。数据库事务的原子性也是基于这个概念演进的。

有序性问题

在并发编程中还有带来让人非常头疼的 有序性问题,有序性顾名思义就是顺序性,在计算机中指的就是指令的先后执行顺序。一个非常显而易见的例子就是 JVM 中的类加载


图文详解:如何做到操作系统和并发同步的结合?_java_05


这是一个 JVM 加载类的过程图,也称为类的生命周期,类从加载到 JVM 到卸载一共会经历五个阶段 加载、连接、初始化、使用、卸载。这五个过程的执行顺序是一定的,但是在连接阶段,也会分为三个过程,即 验证、准备、解析 阶段,这三个阶段的执行顺序不是确定的,通常交叉进行,在一个阶段的执行过程中会激活另一个阶段。

有序性问题一般是编译器带来的,编译器有的时候确实是 好心办坏事,它为了优化系统性能,往往更换指令的执行顺序。

活跃性问题
多线程还会带来活跃性问题,如何定义活跃性问题呢?活跃性问题关注的是 某件事情是否会发生。

如果一组线程中的每个线程都在等待一个事件,而这个事件只能由该组中的另一个线程触发,这种情况会导致死锁。

简单一点来表述一下,就是每个线程都在等待其他线程释放资源,而其他资源也在等待每个线程释放资源,这样没有线程抢先释放自己的资源,这种情况会产生死锁,所有线程都会无限的等待下去。

换句话说,死锁线程集合中的每个线程都在等待另一个死锁线程占有的资源。但是由于所有线程都不能运行,它们之中任何一个资源都无法释放资源,所以没有一个线程可以被唤醒。

如果说死锁很痴情的话,那么活锁用一则成语来表示就是 弄巧成拙。

某些情况下,当线程意识到它不能获取所需要的下一个锁时,就会尝试礼貌的释放已经获得的锁,然后等待非常短的时间再次尝试获取。可以想像一下这个场景:当两个人在狭路相逢的时候,都想给对方让路,相同的步调会导致双方都无法前进。

现在假想有一对并行的线程用到了两个资源。它们分别尝试获取另一个锁失败后,两个线程都会释放自己持有的锁,再次进行尝试,这个过程会一直进行重复。很明显,这个过程中没有线程阻塞,但是线程仍然不会向下执行,这种状况我们称之为 活锁(livelock)。
如果我们期望的事情一直不会发生,就会产生活跃性问题,比如单线程中的无限循环

while(true)…

for(;

以上是关于图文详解:如何做到操作系统和并发同步的结合?的主要内容,如果未能解决你的问题,请参考以下文章

java并发安全详解

40张图文详解,我就不信你还参透不了并发编程,Java学习笔记在互联网上火了

图文详解:mysql原理书籍pdf

Hadoop入门(十四)——集群时间同步(图文详解步骤2021)

详解线程同步和线程互斥,Java如何实现线程同步和互斥

二万字长文图文详解RabbitMQ6 种工作模式(理论与代码相结合)