《30天吃掉那只 TensorFlow2.0》 三TensorFlow的层次结构

Posted 风信子的猫Redamancy

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了《30天吃掉那只 TensorFlow2.0》 三TensorFlow的层次结构相关的知识,希望对你有一定的参考价值。

三、TensorFlow的层次结构

我们介绍TensorFlow中5个不同的层次结构:即硬件层,内核层,低阶API,中阶API,高阶API。并以线性回归和DNN二分类模型为例,直观对比展示在不同层级实现模型的特点。

TensorFlow的层次结构从低到高可以分成如下五层。

最底层为硬件层,TensorFlow支持CPU、GPU或TPU加入计算资源池。

第二层为C++实现的内核,kernel可以跨平台分布运行。

第三层为Python实现的操作符,提供了封装C++内核的低级API指令,主要包括各种张量操作算子、计算图、自动微分.
如tf.Variable,tf.constant,tf.function,tf.GradientTape,tf.nn.softmax…
如果把模型比作一个房子,那么第三层API就是【模型之砖】。

第四层为Python实现的模型组件,对低级API进行了函数封装,主要包括各种模型层,损失函数,优化器,数据管道,特征列等等。
如tf.keras.layers,tf.keras.losses,tf.keras.metrics,tf.keras.optimizers,tf.data.DataSet,tf.feature_column…
如果把模型比作一个房子,那么第四层API就是【模型之墙】。

第五层为Python实现的模型成品,一般为按照OOP方式封装的高级API,主要为tf.keras.models提供的模型的类接口。
如果把模型比作一个房子,那么第五层API就是模型本身,即【模型之屋】。

以上是关于《30天吃掉那只 TensorFlow2.0》 三TensorFlow的层次结构的主要内容,如果未能解决你的问题,请参考以下文章

《30天吃掉那只 TensorFlow2.0》 5-1 数据管道Dataset

《30天吃掉那只 TensorFlow2.0》 5-1 数据管道Dataset

《30天吃掉那只 TensorFlow2.0》 三TensorFlow的层次结构

《30天吃掉那只 TensorFlow2.0》 开篇辞(Tensorflow 学习之路)

《30天吃掉那只 TensorFlow2.0》4-5 AutoGraph和tf.Module

《30天吃掉那只 TensorFlow2.0》4-5 AutoGraph和tf.Module