P1896 [SCOI2005]互不侵犯
Posted Jozky86
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了P1896 [SCOI2005]互不侵犯相关的知识,希望对你有一定的参考价值。
题目:
在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。
题解:
需要知道前一行的情况,所以一行一行的放车
记录每行的情况
在本题中,不能存在相邻的1
对于一行x:
(x&(x<<1))==0----->可以判断左右是否有相邻的1
对于上一行x,下一行y:
(x&y)= = 0
(x&(y<<1)) = =0
(x&(y>>1)) = = 0
上下,左下,右下都不为0
dp[i][j][k]表示第i行状态为k,已经放了j个车
转移方程:
dp[i][j][k]+=dp[i-1][j-num[k]][p]
(k&p) = = 0
(x&(p<<1))= =0
(x&(p>>1))= =0
num[k]表示k状态的国王数
代码中的init是预处理部分,提前求出每一行棋子可摆放的方案情况,方便后面直接使用
代码:
#include<iostream>
#include<cstdio>
using namespace std;
int n,k;
long long dp[10][15000][80]; //dp[i][j][k]表示第i行,状态为j,前面摆了k个国王时,方案数;
long long state[777777] , king[77777] ;//state[]是当前状态,king[]是当前行的国王数;
long long ans , sum;//ans是用来记录状态总数的,sum是用来计算一共有多少种方案的;
inline void init()
int tot = (1<<n) - 1;//最多到这个时候,就是二进制下,每一位上都放上国王,当然有不行的,为了方便下文排除;
for(int i = 0 ; i <= tot ; i++)
if(!((i<<1)&i)) //因为要互不侵犯,所以,两个国王之间必须隔一个,这是判断是否满足题意国王之间不相互攻击;
state[++ans] = i; //找到了满足的,记录这个状态;
int t = i;
while(t) //判断这个状态有多少个国王,也就是t在二进制下有多少个1;
king[ans] += t&1;
t>>=1; //记住,是右移一位,和 t/=2 一样,就是稍微快一点;
int main()
cin>>n>>k; //数据;
init(); //初始化;
for(int i = 1; i <= ans ; i++) //先处理第一行;
if(king[i] <= k) //一行的国王数一定不能超过总数;
dp[1][i][king[i]] = 1;
for(int i = 2 ; i <= n ; i++) //处理剩下的,所以从 2 开始枚举;
for(int j = 1; j <= ans ; j++) //枚举状态;
for(int p = 1; p <= ans ; p++) //再一遍状态,用来当作上一行的状态,因为 我们由上向下递推,能迎上本行的,只有上一行;
//这里就不在赘述了,和处理第一行同理,但是不同的是这里处理相邻的行,
if(state[j] & state[p]) continue; //所以,上下相邻不行
if(state[j] & (state[p]<<1)) continue; //本行的右上角不能有国王;
if((state[j]<<1) & state[p]) continue; //左上角也不行;
for(int s = 1 ; s <= k ; s++)
//s表示本行以上用了多少国王; //满足条件后,还要记得国王数量是有限的!!
if(king[j] + s > k) continue; //我们是递推,所以本行以上一定处理完了,所以,本行加以前用过的国王,总数不能超过限定;
dp[i][j][king[j]+s] += dp[i-1][p][s]; //还记得dp[i][j][k]中的k表示已经用过的国王数,而king[]是本行的,s是本行以前的;
for(int i = 1; i <= n ; i++) //因为不确定在哪一行用光国王,所以都枚举一遍;
for(int j = 1 ; j <= ans ; j++)
sum += dp[i][j][k]; //本行及以前用光了国王,那么方案数加在总数中;
cout<<sum;
return 0;
以上是关于P1896 [SCOI2005]互不侵犯的主要内容,如果未能解决你的问题,请参考以下文章