ML之PDP:基于FIFA 2018 Statistics(2018年俄罗斯世界杯足球赛)球队比赛之星分类预测数据集利用DT决策树&RF随机森林+PDP部分依赖图可视化实现模型可解释性之详细攻

Posted 一个处女座的程序猿

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ML之PDP:基于FIFA 2018 Statistics(2018年俄罗斯世界杯足球赛)球队比赛之星分类预测数据集利用DT决策树&RF随机森林+PDP部分依赖图可视化实现模型可解释性之详细攻相关的知识,希望对你有一定的参考价值。

ML之PDP:基于FIFA 2018 Statistics(2018年俄罗斯世界杯足球赛)球队比赛之星分类预测数据集利用DT决策树&RF随机森林+PDP部分依赖图可视化实现模型可解释性之详细攻略

目录

基于FIFA 2018 Statistics(2018年俄罗斯世界杯足球赛)球队比赛之星分类预测数据集利用DT决策树&RF随机森林+PDP部分依赖图可视化实现模型可解释性

# 1、定义数据集

# 2、数据预处理

# 2.1、分离特征与标签

# 3、模型建立和训练

# 3.1、数据集切分# 3.2、模型训练

# 3.3、树模型可视化并保存图片

# 3.4、PDP可视化

# (1)、单特征PDP可视化

# (2)、双特征交互PDP可视化


相关文章
ML:机器学习可解释性之部分依赖图之每个特征如何影响您的预测?
ML之PDP:基于FIFA 2018 Statistics(2018年俄罗斯世界杯足球赛)球队比赛之星分类预测数据集利用DT决策树&RF随机森林+PDP部分依赖图可视化实现模型可解释性之详细攻略
ML之PDP:基于FIFA 2018 Statistics(2018年俄罗斯世界杯足球赛)球队比赛之星分类预测数据集利用DT决策树&RF随机森林+PDP部分依赖图可视化实现模型可解释性之详细攻略实现

基于FIFA 2018 Statistics(2018年俄罗斯世界杯足球赛)球队比赛之星分类预测数据集利用DT决策树&RF随机森林+PDP部分依赖图可视化实现模型可解释性

# 1、定义数据集

数据集来源Dataset:FIFA 2018 Statistics数据集(Predict FIFA 2018 Man of the Match预测2018年国际足联最佳球员)的简介、下载、使用方法之详细攻略_一个处女座的程序猿的博客-CSDN博客

DateTeamOpponentGoal ScoredBall Possession %AttemptsOn-TargetOff-TargetBlockedCornersOffsidesFree KicksSavesPass Accuracy %PassesDistance Covered (Kms)Fouls CommittedYellow CardYellow & RedRedMan of the Match1st GoalRoundPSOGoals in PSOOwn goalsOwn goal Time
14-06-2018RussiaSaudi Arabia54013733631107830611822000Yes12Group StageNo0
14-06-2018Saudi ArabiaRussia0606033212528651110510000NoGroup StageNo0
15-06-2018EgyptUruguay043833201737839511212200NoGroup StageNo0
15-06-2018UruguayEgypt1571446451133865891116000Yes89Group StageNo0
15-06-2018MoroccoIran06413364501428643310122100NoGroup StageNo0190

# 2、数据预处理

# 2.1、分离特征与标签

df_X    Goal Scored  Ball Possession %  Attempts  ...  Yellow & Red  Red  Goals in PSO
0            5                 40        13  ...             0    0             0
1            0                 60         6  ...             0    0             0
2            0                 43         8  ...             0    0             0
3            1                 57        14  ...             0    0             0
4            0                 64        13  ...             0    0             0

[5 rows x 18 columns]
df_y 0     True
1    False
2    False
3     True
4    False
Name: Man of the Match, dtype: bool

# 3、模型建立和训练

# 3.1、数据集切分
# 3.2、模型训练

# 3.3、树模型可视化并保存图片

# 将dot数据保存为图片

# 3.4、PDP可视化

# (1)、单特征PDP可视化

 

# (2)、双特征交互PDP可视化

以上是关于ML之PDP:基于FIFA 2018 Statistics(2018年俄罗斯世界杯足球赛)球队比赛之星分类预测数据集利用DT决策树&RF随机森林+PDP部分依赖图可视化实现模型可解释性之详细攻的主要内容,如果未能解决你的问题,请参考以下文章

ML:MLOps系列讲解之《基于ML的软件的三个层次》解读

ML之CB:基于自定义电影数据集利用CB基于内容推荐算法(多个指标基于同种相似度加权得分)实现电影Top5推荐案例

ML之CF:基于MovieLens电影评分数据集利用基于用户协同过滤算法(余弦相似度)实现对用户进行Top5电影推荐案例

ML之KG:基于MovieLens电影评分数据集利用基于知识图谱的推荐算法(networkx+基于路径相似度的方法)实现对用户进行Top电影推荐案例

ML之shap:基于boston波士顿房价回归预测数据集利用shap值对XGBoost模型实现可解释性案例

ML之shap:基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用Shap值对XGBoost模型实现可解释性案例之详细攻略