2022-07-23:给定N件物品,每个物品有重量(w[i])有价值(v[i]), 只能最多选两件商品,重量不超过bag,返回价值最大能是多少? N <= 10^5, w[i] <= 10^5, v

Posted 福大大架构师每日一题

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2022-07-23:给定N件物品,每个物品有重量(w[i])有价值(v[i]), 只能最多选两件商品,重量不超过bag,返回价值最大能是多少? N <= 10^5, w[i] <= 10^5, v相关的知识,希望对你有一定的参考价值。

2022-07-23:给定N件物品,每个物品有重量(w[i])、有价值(v[i]),
只能最多选两件商品,重量不超过bag,返回价值最大能是多少?
N <= 10^5, w[i] <= 10^5, v[i] <= 10^5, bag <= 10^5。
本题的关键点:什么数据范围都很大,唯独只需要最多选两件商品,这个可以利用一下。
来自字节,5.6笔试。

答案2022-07-23:

根据重量排序。RMQ。

代码用rust编写。代码如下:、

use rand::Rng;
fn main() 
    let nn: i32 = 12;
    let vv = 20;
    let test_time: i32 = 5000;
    println!("测试开始");
    for i in 0..test_time 
        let n = rand::thread_rng().gen_range(0, nn) + 1;
        let mut w = random_array(n, vv);
        let mut v = random_array(n, vv);
        let bag = rand::thread_rng().gen_range(0, vv * 1);
        let ans1 = max1(&mut w, &mut v, bag);
        let ans2 = max2(&mut w, &mut v, bag);
        if ans1 != ans2 
            println!("i = ", i);
            println!("bag = ", bag);
            println!("w = :?", w);
            println!("v = :?", v);
            println!("ans1 = ", ans1);
            println!("ans2 = ", ans2);
            println!("出错了!");
            break;
        
    
    println!("测试结束");


fn get_max<T: Clone + Copy + std::cmp::PartialOrd>(a: T, b: T) -> T 
    if a > b 
        a
     else 
        b
    


// 暴力方法
// 为了验证而写的方法
fn max1(w: &mut Vec<i32>, v: &mut Vec<i32>, bag: i32) -> i32 
    return process1(w, v, 0, 2, bag);


fn process1(
    w: &mut Vec<i32>,
    v: &mut Vec<i32>,
    index: i32,
    rest_number: i32,
    rest_weight: i32,
) -> i32 
    if rest_number < 0 || rest_weight < 0 
        return -1;
    
    if index == w.len() as i32 
        return 0;
    
    let p1 = process1(w, v, index + 1, rest_number, rest_weight);
    let mut p2 = -1;
    let next = process1(
        w,
        v,
        index + 1,
        rest_number - 1,
        rest_weight - w[index as usize],
    );
    if next != -1 
        p2 = v[index as usize] + next;
    
    return get_max(p1, p2);


// 正式方法
// 时间复杂度O(N * logN)
fn max2(w: &mut Vec<i32>, v: &mut Vec<i32>, bag: i32) -> i32 
    let n = w.len() as i32;
    let mut arr: Vec<Vec<i32>> = vec![];
    for i in 0..n 
        arr.push(vec![]);
        for _ in 0..2 
            arr[i as usize].push(0);
        
    
    for i in 0..n 
        arr[i as usize][0] = w[i as usize];
        arr[i as usize][1] = v[i as usize];
    
    // O(N * logN)
    arr.sort_by(|a, b| a[0].cmp(&b[0]));
    // println!("arr = :?", arr);
    // 重量从轻到重,依次标号1、2、3、4....
    // 价值依次被构建成了RMQ结构
    // O(N * logN)
    let mut rmq = RMQ::new(&mut arr);
    let mut ans = 0;
    // N * logN
    let mut i = 0;
    let mut j = 1;
    while i < n && arr[i as usize][0] <= bag 
        // 当前来到0号货物,RMQ结构1号
        // 当前来到i号货物,RMQ结构i+1号
        // 查询重量的边界,重量 边界 <= bag - 当前货物的重量
        // 货物数组中,找到 <= 边界,最右的位置i
        // RMQ,位置 i + 1
        let limit = bag - arr[i as usize][0];
        let right0 = right(&mut arr, limit) + 1;
        let mut rest: i32 = 0;
        // j == i + 1,当前的货物,在RMQ里的下标
        if right0 == j 
            rest = rmq.fmax(1, right0 - 1);
         else if right0 < j 
            rest = rmq.fmax(1, right0);
         else 
            // right > j
            rest = get_max(rmq.fmax(1, j - 1), rmq.fmax(j + 1, right0));
        
        // println!("ans = ", ans);
        // println!("arr[i as usize][1] + rest = ", arr[i as usize][1] + rest);
        ans = get_max(ans, arr[i as usize][1] +rest);
        // println!("222 ans = ", ans);
        // println!("----------");
        i += 1;
        j += 1;
    
    return ans;


fn right(arr: &mut Vec<Vec<i32>>, limit: i32) -> i32 
    let mut l = 0;
    let mut r = arr.len() as i32 - 1;
    let mut m = 0;
    let mut ans = -1;
    while l <= r 
        m = (l + r) / 2;
        if arr[m as usize][0] <= limit 
            ans = m;
            l = m + 1;
         else 
            r = m - 1;
        
    
    return ans;


pub struct RMQ 
    pub max: Vec<Vec<i32>>,


impl RMQ 
    pub fn new(arr: &mut Vec<Vec<i32>>) -> Self 
        let mut ans: RMQ = RMQ  max: vec![] ;
        let n = arr.len() as i32;
        let k = ans.power2(n);
        let mut max: Vec<Vec<i32>> = vec![];
        for i in 0..n + 1 
            max.push(vec![]);
            for _ in 0..k + 1 
                max[i as usize].push(0);
            
        
        for i in 1..=n 
            max[i as usize][0] = arr[(i - 1) as usize][1];
        
        let mut j = 1;
        while (1 << j) <= n 
            let mut i = 1;
            while i + (1 << j) - 1 <= n 
                max[i as usize][j as usize] = get_max(
                    max[i as usize][(j - 1) as usize],
                    max[(i + (1 << (j - 1))) as usize][(j - 1) as usize],
                );
                i += 1;
            
            j += 1;
        
        ans.max = max;
        return ans;
    

    pub fn fmax(&mut self, l: i32, r: i32) -> i32 
        if r < l 
            return 0;
        
        let k = self.power2(r - l + 1);
        return get_max(
            self.max[l as usize][k as usize],
            self.max[(r - (1 << k) + 1) as usize][k as usize],
        );
    

    fn power2(&mut self, m: i32) -> i32 
        let mut ans = 0;
        while (1 << ans) <= (m >> 1) 
            ans += 1;
        
        return ans;
    


// 为了测试
fn random_array(n: i32, v: i32) -> Vec<i32> 
    let mut ans: Vec<i32> = vec![];
    for _ in 0..n 
        ans.push(rand::thread_rng().gen_range(0, v));
    
    return ans;


执行结果如下:


左神java代码

以上是关于2022-07-23:给定N件物品,每个物品有重量(w[i])有价值(v[i]), 只能最多选两件商品,重量不超过bag,返回价值最大能是多少? N <= 10^5, w[i] <= 10^5, v的主要内容,如果未能解决你的问题,请参考以下文章

0-1背包(动态规划)

带有多个袋子和只有重量的物品的背包

1268 完全背包问题

从算法看背包问题

ACM-小偷的背包

小偷的背包(0963)