动手深度学习4月10日
Posted wx5cbd4315aefc1
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了动手深度学习4月10日相关的知识,希望对你有一定的参考价值。
如果想看jupyter note效果的请点击github地址
多层感知机的从零开始实现
import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
实现一个具有单隐藏层的多层感知机, 它包含256个隐藏单元
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = nn.Parameter(
torch.randn(num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(
torch.randn(num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))
params = [W1, b1, W2, b2]
实现ReLU激活函数表
def relu(X):
a = torch.zeros_like(X)
return torch.max(X,a)
实现我们的模型
def net(X):
X = X.reshape((-1, num_inputs))
H = relu(X @ W1 + b1)
return (H @ W2 + b2)
loss = nn.CrossEntropyLoss()
多层感知机的训练过程与softmax回归的训练过程完全相同
num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
多层感知机的简洁实现
import torch
from torch import nn
from d2l import torch as
隐藏层包含256个隐藏单元, 并使用了ReLU激活函数
net = nn.Sequential(nn.Flatten(), nn.Linear(784,256),nn.ReLU(),
nn.Linear(256,10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights);
batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss()
trainer = torch.optim.SGD(net.parameters(), lr=lr)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
以上是关于动手深度学习4月10日的主要内容,如果未能解决你的问题,请参考以下文章