#夏日挑战赛# FFH从零开始的鸿蒙机器学习之旅-NLP情感分析

Posted 开源基础软件社区官方

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了#夏日挑战赛# FFH从零开始的鸿蒙机器学习之旅-NLP情感分析相关的知识,希望对你有一定的参考价值。

[本文正在参加星光计划3.0-夏日挑战赛]

1.2 导入Standford CoreNLP库

1.2.1我们可以在官网下载工具包StandfordCoreNLP

1.2.2解压,并引入lib中


右键文件夹,点击add as library

2.情感分析

2.1 新建JAVA类,NLP_EMOTION

package com.example.nlpdemo.utils;

import edu.stanford.nlp.ling.CoreAnnotations;
import edu.stanford.nlp.neural.rnn.RNNCoreAnnotations;
import edu.stanford.nlp.pipeline.Annotation;
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
import edu.stanford.nlp.sentiment.SentimentCoreAnnotations;
import edu.stanford.nlp.trees.Tree;
import edu.stanford.nlp.util.CoreMap;

import java.util.Properties;

public class NLP_EMOTION 
     //必要: 功能入口
    StanfordCoreNLP pipeline = null;
    //无关要素 记分用的
    public int score;
    public  void startengine()
       //实例化一个对象
        Properties props  = new Properties();
        this.score=0;
        //设置所需要的功能,分词,情感分析等,annotators就是前文提到的工具类
        props.setProperty("annotators", "tokenize, ssplit, parse, sentiment");
        //实现接口
        pipeline = new StanfordCoreNLP(props);
    
    public int getScore()
        return score;
    
    public String sentiment_emotion(String text)
    
        int emotion;
        this.score = 0;
        String emotion_state;
        String str="";
        //传入我们需要分析的字符串
        Annotation annotation = pipeline.process(text);
        int i=0;
        for(CoreMap sentence : annotation.get(CoreAnnotations.SentencesAnnotation.class))
           //语法树
            Tree tree = sentence.get(SentimentCoreAnnotations.SentimentAnnotatedTree.class);
            //情感打分
            emotion = RNNCoreAnnotations.getPredictedClass(tree);
            i++;
            score+=emotion;
           //情感状态
            emotion_state = sentence.get(SentimentCoreAnnotations.SentimentClass.class);
            str +=emotion_state + ": "  + sentence+ " "+emotion +"|";

        
        score = score/i;
        return str;
    

import com.example.nlpdemo.utils.NLP_EMOTION;
import ohos.aafwk.ability.Ability;
import ohos.aafwk.content.Intent;
import ohos.app.Context;
import ohos.hiviewdfx.HiLog;
import ohos.hiviewdfx.HiLogLabel;
import ohos.rpc.*;
import ohos.utils.zson.ZSONObject;

import java.util.HashMap;
import java.util.Map;

public class NLPServiceAbility extends Ability
private static final String TAG = "NLP测试";
// 定义日志标签
private static final HiLogLabel LABEL = new HiLogLabel(3, 0xD000F00, TAG);
private Context context;
private MyRemote remote = new MyRemote();
private String str="";
private IRemoteObject remoteObjectHandler;
static NLP_EMOTION nlpPipeline = null;
private int has_new=0;
// FA在请求PA服务时会调用Ability.connectAbility连接PA,连接成功后,需要在onConnect返回一个remote对象,供FA向PA发送消息br/>@Override
protected IRemoteObject onConnect(Intent intent)
super.onConnect(intent);

    return remote.asObject();

public static String test(String s)
    String text = s;
    nlpPipeline  = new NLP_EMOTION();
    nlpPipeline.startengine();
    String result = nlpPipeline.sentiment_emotion(text);
    HiLog.info(LABEL,"yzj"+nlpPipeline.sentiment_emotion(text));
    return result;

class MyRemote extends RemoteObject implements IRemoteBroker 
    private static final int SUCCESS = 0;
    private static final int ERROR = 1;
    private static final int PLUS = 1001;
    private static final int SUBSCRIBE=1005;
    private  static  final int NLP =1010;

    MyRemote() 

        super("MyService_MyRemote");
    

    @Override
    public boolean onRemoteRequest(int code, MessageParcel data, MessageParcel reply, MessageOption option) 
        switch (code) 
            case SUBSCRIBE:
                // 如果仅支持单FA订阅,可直接覆盖:remoteObjectHandler = data.readRemoteObject();
                remoteObjectHandler=data.readRemoteObject();
               // startNotify();
                Map<String, Object> result = new HashMap<String, Object>();
                result.put("code", SUCCESS);
                reply.writeString(ZSONObject.toZSONString(result));
                break;
            
            case PLUS: 
                String dataStr = data.readString();

                // 返回结果当前仅支持String,对于复杂结构可以序列化为ZSON字符串上报
                Map<String, Object> result = new HashMap<String, Object>();
                result.put("code", SUCCESS);
                result.put("abilityResult", "111");
                reply.writeString(ZSONObject.toZSONString(result));
                break;
            
            case NLP: 
                str = data.readString();
                // 返回结果当前仅支持String,对于复杂结构可以序列化为ZSON字符串上报
                HiLog.info(LABEL,str);
                Map<String, Object> result = new HashMap<String, Object>();
                result.put("code", SUCCESS);
                result.put("abilityResult", "NLP函数成功被调用");
                result.put("emotion", test(str));
                result.put("score",nlpPipeline.getScore());
                str="";
                reply.writeString(ZSONObject.toZSONString(result));
                break;
            
            default: 
                Map<String, Object> result = new HashMap<String, Object>();
                result.put("abilityError", ERROR);
                reply.writeString(ZSONObject.toZSONString(result));
                return false;
            
        
        return true;
    
    @Override
    public IRemoteObject asObject() 
        return this;
    

### 3.2 JS侧
+ index.js
```javascript
export default 
    data: 
        title: "",
        str:"NONE",
        inputfield:"nothing",
        tips:"none",
        score:"0",

    ,
    onInit() 
        this.title = "测测你现在的心情";
        this.Subscribekv();
        this.NLP();
    ,
    //订阅PA
    initAction: function (code) 
        var actionData = 
        ;
        var action = ;
        action.bundleName = "com.yzj.card";
        action.abilityName = "com.example.nlpdemo.NLPServiceAbility";
        action.messageCode = code;
        action.data = actionData;
        action.abilityType = 0;
        action.syncOption = 0;
        return action;
    ,
    Subscribekv:async function()
        try
            var action = this.initAction(1005);
            var that = this;
            var _data = ;
            var result = await FeatureAbility.subscribeAbilityEvent(action,function (res)  //调用订阅服务API
                console.info(" 订阅PA返回的结果是: " + res);
                console.info("收到返回结果")
                this.onShow();

            );

            console.info(" subscribeCommonEvent result = " + result);
        
        catch (pluginError) 
            console.error("subscribeCommonEvent error : result= " + JSON.stringify(pluginError));
        
    ,
    NLP: async function()
        var actionData = ;
        actionData=this.str;
        var action = ;

        action.bundleName = com.yzj.card;
        action.abilityName = com.example.nlpdemo.NLPServiceAbility;
        action.messageCode = 1010;
        action.data = actionData;
        action.abilityType = 0;
        action.syncOption =0;

        var result = await FeatureAbility.callAbility(action);
        var ret = JSON.parse(result);
        if (ret.code == 0) 
            console.info(plus result is: + JSON.stringify(ret.abilityResult));
            console.info(NLP返回结果+JSON.stringify(ret.emotion));
            var ss = JSON.stringify(ret.emotion).replace("|","\\n");
            this.inputfield = ss;
            console.info("平均emotion:"+JSON.stringify(ret.score));
            let rank = parseInt(JSON.stringify(ret.score));
            this.score = rank;
            if(rank==1)
                this.tips="今天或许有些糟糕?";
            
            else if(rank==2)
                this.tips = "平平淡淡才是真"
            
            else if(rank>=3)
                this.tips ="今天充满欢喜!"
            

         else 
            console.error(plus error code: + JSON.stringify(ret.code));
        
    ,
    textfield(e)
        this.str=e.value;
    

  • index.hml

    
    <div class="container">
    <text class="title" style="font-size: 32px;">
         title 
    </text>
    <input id="infield" type="text" style="width:70%;height: 12%;font-size: 20px;margin-top: 30px;"@change="textfield"
            >
    请输入文本
    </input>
    <button type="capsule" onclick="NLP" style="width: 150px;height: 60px;margin-top: 30px;">
    测一测
    </button>
    <text  style="width: 312px;height: 200px;background-color:cornflowerblue;margin-top: 30px;border-radius: 25px;font-size: 20px;">
        inputfield
    
    </text>
    <text style="font-size:20px;width:80%;height:10%;background-color: aquamarine;margin-top: 30px;border-radius: 25px;">
     tips
                   评分 score
    </text>
    </div>

## 4.结语
   关于机器学习内容还有非常多有意思的事情,这样的模式显然不是最佳的开发模式,5G大的工程文件(哈哈),最好能部署在云端,只能说实现一些功能,但非好用的功能,却也是一次尝试。在这个包下能够开发出很多有意思的功能,也支持中文等多种语言工具,还可以结合华为鸿蒙目前支持的AI功能,欢迎读者尝试和积极沟通。
  **或许,我们应该做一些更大胆的尝试?在HarmonyOS,OpenHarmony上从零搭建机器学习模型,再结合分布式能力,穷尽N多台设备的算力?也不知道手上的麒麟990能到何种程度。**(嘻)

[想了解更多关于开源的内容,请访问:](https://ost.51cto.com/#bkwz)

[51CTO 开源基础软件社区](https://ost.51cto.com#bkwz)

https://ost.51cto.com/#bkwz

以上是关于#夏日挑战赛# FFH从零开始的鸿蒙机器学习之旅-NLP情感分析的主要内容,如果未能解决你的问题,请参考以下文章

#夏日挑战赛#FFH分布式数据服务简单实现(OpenHarmony JS UI)

#夏日挑战赛#FFH实时聊天室之WebSocket实战

木棉花#夏日挑战赛# 鸿蒙小游戏项目——数独Sudoku

木棉花#夏日挑战赛# 鸿蒙小游戏项目——数独Sudoku

#夏日挑战赛#鸿蒙FA开发之JSUI与JavaUI相互跳转实例

#夏日挑战赛#FFHAI作诗之httpRequest实战