使用nvidia_gpu_expoter配合prometheus+grafana监控GPU性能

Posted boxrice

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用nvidia_gpu_expoter配合prometheus+grafana监控GPU性能相关的知识,希望对你有一定的参考价值。

项目地址:​GitHub - utkuozdemir/nvidia_gpu_exporter: Nvidia GPU exporter for prometheus using nvidia-smi binary​​

根据git上面的nvidia监控项目,可以实现grafana监控GPU,但是git上面提供的utkuozdemir/nvidia_gpu_exporter:0.3.0这个镜像只可以在ubuntu系统上面运行,如果在centos上运行,日志会提示无法获取到GPU信息,也就导致无法接到k8s的prometheus.目前使用的方法是将nvidia_gpu_exporter这个可执行访问下载到centos系统中,然后通过系统命令运行,最终得到一个服务,也就是gpu的metircs。然后在k8s中,创建endpoinst、service、servicemonitor,实现prometheus收集到gpu-metrics信息,最后通过grafana进行可视化展示。下面是具体操作步骤:

1 在centos系统中有创建nvidia_gpu_exporter服务

安装nvidia_gpu_exporter服务

# VERSION=0.3.0​
# wget ​​https://github.com/utkuozdemir/nvidia_gpu_exporter/releases/download/v$VERSION/nvidia_gpu_exporter_$VERSION_linux_x86_64.tar.gz​​
# tar -xvzf nvidia_gpu_exporter_$VERSION_linux_x86_64.tar.gz​
# mv nvidia_gpu_exporter /usr/local/bin​
# ./nvidia_gpu_exporter

此时通过web页面就可查看此台GPU服务器的gpu-metircs信息,如下图

使用nvidia_gpu_expoter配合prometheus+grafana监控GPU性能_prometheus

可以看到GPU相关信息​

创建nvidia_gpu_exporter服务​

# vim /etc/systemd/system/nvidia_gpu_exporter.service ​

[Unit]​
Description=Nvidia GPU Exporter​
After=network-online.target​

[Service]​
Type=simple​

User=nvidia_gpu_exporter​
Group=nvidia_gpu_exporter​

ExecStart=/usr/local/bin/nvidia_gpu_exporter​

SyslogIdentifier=nvidia_gpu_exporter​

Restart=always​
RestartSec=1

NoNewPrivileges=yes

ProtectHome=yes
ProtectSystem=strict​
ProtectControlGroups=true
ProtectKernelModules=true
ProtectKernelTunables=yes
ProtectHostname=yes
ProtectKernelLogs=yes
ProtectProc=yes

[Install]​
WantedBy=multi-user.target​
# systemctl daemon-reload ​
[root@k8s-gpu4 ~]# systemctl enable nvidia_gpu_exporter​
[root@k8s-gpu4 ~]# systemctl start nvidia_gpu_exporter.service ​
[root@k8s-gpu4 ~]# systemctl status nvidia_gpu_exporter.service ​
● nvidia_gpu_exporter.service - Nvidia GPU Exporter​
Loaded: loaded (/etc/systemd/system/nvidia_gpu_exporter.service; enabled; vendor preset: disabled)​
Active: active (running) since Fri 2022-05-13 17:36:03 CST; 5s ago​
Main PID: 80178 (nvidia_gpu_expo)​
Tasks: 6
Memory: 5.6M​
CGroup: /system.slice/nvidia_gpu_exporter.service​
└─80178 /usr/local/bin/nvidia_gpu_exporter​

May 13 17:36:03 k8s-gpu4 systemd[1]: Started Nvidia GPU Exporter.​
May 13 17:36:04 k8s-gpu4 nvidia_gpu_exporter[80178]: ts=2022-05-13T09:36:04.005Z caller=main.go:68 level=info msg="Listening on add...=:9835​
May 13 17:36:04 k8s-gpu4 nvidia_gpu_exporter[80178]: ts=2022-05-13T09:36:04.006Z caller=tls_config.go:195 level=info msg="TLS is di...=false
Hint: Some lines were ellipsized, use -l to show in full.​

服务启动成功,通过页面查看​

使用nvidia_gpu_expoter配合prometheus+grafana监控GPU性能_prometheus_02

2 在k8s中创建endpoints、service、servicemonitor

  1. 创建endpoints
# cat gpu-exporter-endpoint.yaml 
apiVersion: v1
kind: Endpoints
metadata:
name: nvidia-gpu-exporter
namespace: monitoring
subsets:
- addresses:
- ip: 10.1.12.17
ports:
- name: http
port: 9835
protocol: TCP


上面的ip为GPU服务器地址,如果是多台GPU,可在下面继续添加,如
- ip: *.*.*.*
- ip: *.*.*.*

# kubectl create -f gpu-exporter-endpoint.yaml 
endpoints/nvidia-gpu-exporter created
# kubectl get endpoints -n monitoring nvidia-gpu-exporter
NAME ENDPOINTS AGE
nvidia-gpu-exporter 10.1.12.17:9835 39s
# kubectl describe endpoints -n monitoring nvidia-gpu-exporter
Name: nvidia-gpu-exporter
Namespace: monitoring
Labels: <none>
Annotations: <none>
Subsets:
Addresses: 10.1.12.17
NotReadyAddresses: <none>
Ports:
Name Port Protocol
---- ---- --------
http 9835 TCP

Events: <none>
  1. 创建service
# cat gpu-exporter-svc.yaml ​
apiVersion: v1​
kind: Service​
metadata:​
labels:​
app: nvidia-gpu-exporter​
name: nvidia-gpu-exporter​
namespace: monitoring​
spec:​
ports:​
- name: http​
protocol: TCP​
port: 9835
targetPort: http​
type: ClusterIP​
# kubectl delete -f gpu-exporter-svc.yaml ​
service "nvidia-gpu-exporter" deleted​
kubectl create -f gpu-exporter-svc.yaml ​
service/nvidia-gpu-exporter created​
# kubectl get svc -n monitoring nvidia-gpu-exporter ​
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE​
nvidia-gpu-exporter ClusterIP 10.10.75.226 <none> 9835/TCP 12s​
# kubectl describe svc -n monitoring nvidia-gpu-exporter ​
Name: nvidia-gpu-exporter​
Namespace: monitoring​
Labels: app=nvidia-gpu-exporter​
Annotations: <none>​
Selector: <none>​
Type: ClusterIP​
IP: 10.10.235.70​
Port: http 9835/TCP​
TargetPort: http/TCP​
Endpoints: 10.1.12.17:9835​
Session Affinity: None​
Events: <none>


上面的endpioins一定要为上面创建的endpoints中的IP和port

  1. 创建servicemonitor
#cat gpu-exporter-serviceMonitor.yaml 
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
labels:
app: nvidia-gpu-exporter
name: nvidia-gpu-exporter
namespace: monitoring
spec:
endpoints:
- interval: 30s
port: http
jobLabel: app
selector:
matchLabels:
app: nvidia-gpu-exporter
kubectl create -f gpu-exporter-serviceMonitor.yaml
servicemonitor.monitoring.coreos.com/nvidia-gpu-exporter created
[root@k8s-master dongtai]# kubectl get servicemonitors.monitoring.coreos.com -n monitoring nvidia-gpu-exporter
NAME AGE
nvidia-gpu-exporter 12s
# kubectl describe servicemonitors.monitoring.coreos.com -n monitoring nvidia-gpu-exporter
Name: nvidia-gpu-exporter
Namespace: monitoring
Labels: app=nvidia-gpu-exporter
Annotations: <none>
API Version: monitoring.coreos.com/v1
Kind: ServiceMonitor
Metadata:
Creation Timestamp: 2022-05-13T09:50:35Z
Generation: 1
Managed Fields:
API Version: monitoring.coreos.com/v1
Fields Type: FieldsV1
fieldsV1:
f:metadata:
f:labels:
.:
f:app:
f:spec:
.:
f:endpoints:
f:jobLabel:
f:selector:
.:
f:matchLabels:
.:
f:app:
Manager: kubectl-create
Operation: Update
Time: 2022-05-13T09:50:35Z
Resource Version: 14080381
Self Link: /apis/monitoring.coreos.com/v1/namespaces/monitoring/servicemonitors/nvidia-gpu-exporter
UID: 7fdb365b-8bcd-4fc2-9772-9ad7de6155bf
Spec:
Endpoints:
Interval: 30s
Port: http
Job Label: app
Selector:
Match Labels:
App: nvidia-gpu-exporter
Events: <none>
  1. prometheus页面验证

在prometheus页面的targets中查看nvidia_gpu_exporter

使用nvidia_gpu_expoter配合prometheus+grafana监控GPU性能_prometheus_03

在Graph页面中进行nvidia搜索

使用nvidia_gpu_expoter配合prometheus+grafana监控GPU性能_GPU_04

通过搜索可以得到这台GPU服务器有两张3090GPU

3 在grafana中创建GPU监控面板

在grafana导入官方提供的json文件

使用nvidia_gpu_expoter配合prometheus+grafana监控GPU性能_GPU_05

使用nvidia_gpu_expoter配合prometheus+grafana监控GPU性能_prometheus_06

使用nvidia_gpu_expoter配合prometheus+grafana监控GPU性能_prometheus_07

导入官方的json文件会出现错误提示,原因是这个json文件配置有问题,我们需要进行修改。​

点击右上角进行修改​

使用nvidia_gpu_expoter配合prometheus+grafana监控GPU性能_prometheus_08

点击Variables,点击gpu​

使用nvidia_gpu_expoter配合prometheus+grafana监控GPU性能_prometheus_09

将Query改成如下,改完后,可以得到GPU服务器的IP,最后点击update​

使用nvidia_gpu_expoter配合prometheus+grafana监控GPU性能_prometheus_10

返回监控页后,可以得到如下图:​

使用nvidia_gpu_expoter配合prometheus+grafana监控GPU性能_prometheus_11

最终GPU相关的性能指标能得到很好展示​


以上是关于使用nvidia_gpu_expoter配合prometheus+grafana监控GPU性能的主要内容,如果未能解决你的问题,请参考以下文章

统一开发环境,qt pro转vs工程的便捷工具

12.9英寸新iPad Pro兼容旧款妙控键盘 但是有点“贴身”

Macbook Pro 怎么装写论文用的Tex软件

微软官网:Microsoft Surface Pro 7 最低$998起 还送保护套

荣耀9X PRO方舟编译器顺滑体验

2019年模块化Mac Pro预计将有三点改进