机器学习 vs 深度学习:了解两者的异同

Posted 程序猿-饭饭

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习 vs 深度学习:了解两者的异同相关的知识,希望对你有一定的参考价值。

在人工智能领域中,机器学习和深度学习是两个重要的概念。尽管它们都可以用于处理复杂的数据和任务,但它们在其基本原理、算法和应用方面有着显著的不同之处。在本文中,我们将详细介绍机器学习和深度学习的定义、原理、算法和应用,并讨论它们之间的不同之处。

一、机器学习和深度学习的定义

机器学习是一种人工智能领域的分支,旨在使计算机系统能够自动从数据中学习和提高性能,而不需要明确的编程。简而言之,机器学习是利用经验来训练计算机系统,使其能够从输入数据中提取规律,并对新数据进行预测或分类。

深度学习是机器学习的一个分支,它利用多层神经网络来处理复杂的数据和任务。深度学习中的神经网络由许多节点和层组成,每个节点都会接收一些输入,并计算出相应的输出。通过不断地调整网络参数,深度学习可以自动发现数据中的复杂模式,并产生高质量的预测或分类结果。

二、机器学习和深度学习的原理

机器学习的基本原理是从数据中提取特征,并根据这些特征训练一个模型。这个模型可以用于对新数据进行预测或分类。机器学习的主要任务是选择一个适当的模型来拟合数据,使其能够泛化到新的数据集。

深度学习的原理是通过多层神经网络来学习和处理数据。这些神经网络由许多节点和层组成,每个节点都会接收一些输入,并计算出相应的输出。深度学习的主要任务是选择适当的网络结构和参数来最小化预测误差,以实现对复杂数据和任务的准确建模。

三、机器学习和深度学习的算法

机器学习包括多种算法,如线性回归、逻辑回归、决策树、随机森林、支持向量机等。这些算法在处理不同类型的数据和任务时都有不同的适用性。例如,线性回归适用于连续性数据的预测,而决策树适用于分类和特征选择。

深度学习的算法包括卷积神经网络、循环神经网络、自编码器等。卷积神经网络适用于处理图像和视频数据,循环神经网络适用于处理序列数据,自编码器适用于降维和特征提取。

其中,深度学习最为重要的算法之一是反向传播算法(backpropagation algorithm),它是深度神经网络训练的核心算法。反向传播算法通过不断地计算误差梯度,逐层反向更新神经网络参数,从而使神经网络逐渐逼近最优状态。这种反向传播算法是一种有效的优化方法,可以加速深度学习的训练过程,并提高其性能和准确度。

四、机器学习和深度学习的应用

机器学习的应用范围非常广泛,包括图像识别、语音识别、自然语言处理、推荐系统、广告推荐、金融风控等。在图像识别方面,机器学习可以用于人脸识别、目标检测、图像分割等任务。在语音识别方面,机器学习可以用于语音转文字、语音识别等任务。在自然语言处理方面,机器学习可以用于情感分析、文本分类、机器翻译等任务。在推荐系统和广告推荐方面,机器学习可以用于个性化推荐、广告定向等任务。在金融风控方面,机器学习可以用于信用评估、欺诈检测、风险控制等任务。

深度学习的应用也非常广泛,包括图像识别、语音识别、自然语言处理、智能问答、自动驾驶、游戏智能等。在图像识别方面,深度学习可以用于人脸识别、目标检测、图像分割等任务。在语音识别方面,深度学习可以用于语音转文字、语音识别等任务。在自然语言处理方面,深度学习可以用于机器翻译、文本分类、情感分析等任务。在智能问答方面,深度学习可以用于自然语言对话、问答系统等任务。在自动驾驶方面,深度学习可以用于视觉感知、决策控制等

需要机器学习深度学习资料包可以关注我回复(123)白嫖领
资料包内含:
模块1:超详细人工智能学习大纲
模块2:Python基础+高数基础
模块3:机器学习入门
模块4:深度学习入门
模块5:计算机视觉实战项目
模块6:自然语言处理应用项目实战
模块7:AI必读经典书籍
模块8:人工智能论文合集

 

机器学习 vs 深度学习到底有啥区别,为什么更多人选择机器学习

机器学习和深度学习有什么区别?让我们从本文中寻找答案。

目标

本文中,我们将深度学习与机器学习作比较。我们将逐一了解他们。我们还会讨论他们在各个方面的不同点。除了深度学习和机器学习的比较,我们还将研究它们未来的趋势。

机器学习 vs 深度学习到底有啥区别,为什么更多人选择机器学习

对比介绍深度学习和机器学习

a. 什么是机器学习?

通常,为了实现人工智能,我们会使用机器学习。我们有几种用于机器学习的算法。例如:

  • Find-S

  • 决策树(Decision trees)

  • 随机森林(Random forests)

  • 人工神经网络(Artificial Neural Networks)

通常,有3类学习算法:

  1. 监督机器学习算法进行预测。此外,该算法在分配给数据点的值标签中搜索模式。

  2. 无监督机器学习算法:没有标签与数据关联。并且,这些 ML 算法将数据组成簇。此外,他需要描述其结构,并使复杂的数据看起来简单且能有条理的分析。

  3. 增强机器学习算法:我们使用这些算法选择动作。并且,我们能看到它基于每个数据点。一段时间后,算法改变策略来更好地学习。


b.什么是深度学习?

机器学习只关注解决现实问题。它还需要人工智能的一些想法。机器学习通过旨在模仿人类决策能力的神经网络。ML工具和技术是两个主要的仅关注深度学习的窄子集。我们需要应用它来解决任何需要思考的问题 —— 人类的或人为的。任何深度神经网络都将包含以下三层:

  • 输入层

  • 隐藏层

  • 输出层

我们可以说深度学习是机器学习领域的最新术语。这是实现机器学习的一种方式。


3. 深度学习vs机器学习

我们用机器算法来解析数据,学习数据,并从中做出理智的判定。根本上讲,深度学习用于创建可自我学习和可理智判定的人工“神经网络”。我们可以说深度学习是机器学习的子领域。

4. 机器学习与深度学习对比

a.数据依赖

性能是区别二者的最主要之处。当数据量小时,深度学习算法表现不佳。这就是DL算法需要大量的数据才能完美理解的唯一原因。

机器学习 vs 深度学习到底有啥区别,为什么更多人选择机器学习

我们可以看到,人工创立的该场景之下算法占据上风。上图总结了该情况。


b. 硬件依赖

通常,深度学习依赖于高端设备,而传统学习依赖于低端设备。因此,深度学习要求包含 GPU。这是它工作中不可或缺的一部分。它们还需要进行大量的矩阵乘法运算。

c. 功能工程化

这是一个通用的过程。在此,领域知识被用于创建特征提取器,以降低数据的复杂性,并使模式对学习算法的工作原理上更可见,虽然处理起来非常困难。 因此,这是耗时并需要专业知识的。

机器学习 vs 深度学习到底有啥区别,为什么更多人选择机器学习


d. 解决问题的方法

通常,我们使用传统算法来解决问题。但它需要将问题分解为不同的部分以单独解决它们。要获得结果,请将它们全部合并起来。

例如:

让我们假定你有一个多对象检测的任务。在此任务中,我们必须确定对象是什么以及它在图像中的位置。在机器学习方法中,我们必须将问题分为两个步骤:

  • 对象检测

  • 对象识别

首先,我们使用抓取算法遍历图像并找到所有可能的对象。然后,在所有已识别的对象中,你将使用诸如 SVM 和 HOG 这样的对象识别算法来识别相关对象。


e.执行时间

通常,与机器学习相比,深度学习需要更多时间进行训练。主要原因是深度学习算法中有太多参数。机器学习需要进行训练的时间较少,从几秒钟到几个小时范围内。

f.可解释性

我们将可解释性作为比较两种学习技术的因素。尽管如此,深度学习在工业应用之前仍然被考虑再三。

机器学习和深度学习主要被应用在何处?

a. 计算机视觉:我们将其用于像车牌识别和面部识别等应用。

b. 信息检索:我们将 ML 和 DL 用于像囊括文本检索及图像检索的搜索引擎等应用。

c. 市场营销:我们在自动电子邮件营销及客户群识别上使用这些学习技术。

d. 医疗诊断:它在医疗领域也有广泛的应用,像癌症识别及异常检测等应用。

  • 自然语言处理

  • 针对类似情感分析、照片标签生成、在线广告等应用

此处可了解更多关于机器学习类应用。


未来趋势

  • 如今,机器学习和数据科学已经成为一种趋势。在企业中,对这两种产品的需求都在迅速增长。对于那些想要在自己的业务中融入机器学习的公司,两者被迫切地需求着。

  • 深度学习被发现和证明有最好的技术表现力。并且,深度学习正在不断给我们带来惊喜并将在不久的将来继续这样做。

  • 近年来,研究人员不断探索机器学习和深度学习。过去,研究人员仅限于学术界。但是,如今,在工业和学术界中ML和DL都有自己的一席之地。

结论

我们已经研究讨论了深度学习和机器学习,并对两者进行了比较。为了更好地表达和理解,我们还研究了影像。如果你有任何问题,请在评论区提出。

以上是关于机器学习 vs 深度学习:了解两者的异同的主要内容,如果未能解决你的问题,请参考以下文章

机器学习 vs 深度学习到底有啥区别,为什么更多人选择机器学习

深度学习 vs 机器学习 vs 模式识别

深度学习VS机器学习——到底什么区别

人工智能 VS 机器学习 VS 深度学习

人工智能VS机器学习VS深度学习

简析机器学习和深度学习之间的区别