人脸识别技术有啥优势和隐患

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了人脸识别技术有啥优势和隐患相关的知识,希望对你有一定的参考价值。

1、非接触:人脸图像的采集不同于指纹、掌纹需要接触指掌纹专用采集设备,指掌纹的采集除了对设备有一定的磨损外,也不卫生,容易引起被采集者的反感,而人脸图像采集的设备是摄像头,无须接触。
2、非侵扰:人脸照片的采集可使用摄像头自动拍照,无须工作人员干预,也无须被采集者配合,只需以正常状态经过摄像头前即可。
3、友好:人脸是一个人出生之后暴露在外的生物特征,因此它的隐私性并不像指掌纹、虹膜那样强,因此人脸的采集并不像指掌纹采集那样难以让人接受。
4、直观:我们判断一个人是谁,通过看这个人的脸就是最直观的方式,不像指掌纹、虹膜等需要相关领域专家才可以判别。
5、快速:从摄像头监控区域进行人脸的采集是非常快速的,因为它的非干预性和非接触性,让人脸采集的时间大大缩短。比如虹软 科技的人脸识别系统识别非常快,人脸识别设备被运用到安防、酒店、商务、会议、社区等。
6、简便:人脸采集前端设备——摄像头随处可见,它不是专用设备,因此简单易操作。
7、可扩展性好:它的采集端完全可以采用现有视频监控系统的摄像设备,后端应用的扩展性决定了人脸识别可以应用在出入控制、黑名单监控、人脸照片搜索等多领域。
虹软家有免费的人脸识别算法想了解的可以去下载一下。
参考技术A   在信息化的今天,安全问题已经成为了与每个人切身相关的问题。特别是对于个人身份信息来说,诸多垃圾短信和骚扰电话的出现也说明了信息安全对于我们自身的重要性。近日,香港中文大学教授汤晓鸥、王晓刚及其研究团队宣布,他们研发的DeepID人脸识别技术的准确率超过99%,比肉眼识别更加精准。我们有幸对汤晓鸥教授进行了书面采访,请他谈谈科研经历与行业发展。
  据悉,汤晓鸥教授领导的计算机视觉研究组 (mmlab.ie.cuhk.edu.hk) 开发了一个名为DeepID的深度学习模型, 在LFW (Labeled Faces in the Wild)数据库上获得了99.15%的识别率,这也是有史以来首次超过99%的LFW识别率。
  在此之前,,Facebook发布了另一套基于深度学习的人脸识别算法DeepFace,在LFW上取得了97.35%的识别率。本次汤晓鸥教授的研究团队发布的DeepID在实验数据的应用数量上只有20万,但是错误率更低。
  在谈到人脸识别领域的时候,汤晓鸥教授表示从学术上来讲,人脸识别技术起到了一个标杆的作用,对于其他研究有着深度的借鉴意义。他同时表示,从2000年从事人脸识别技术研发开始,已经有了10多年的科研经验,除了人脸识别之外,包括检测、定位、表情、姿态等相关技术也有涉及。
  汤晓鸥教授还特别谈到了DeepID的主要内容——deep learning,这是一种模仿人大脑的学习过程,是一项比较开创性的工作。DeepID的识别率要高于人眼,意味着替代人类做更可靠的工作,很多靠人工识别图像的工作可以由机器承担。
  在谈到NVIDIA的加速作用时,汤晓鸥教授表示——用了NVIDIA Tesla K40以后,GPU可以将计算时间提高几十到上百倍,大大缩短模型生成过程的时间。就现有项目里的实际情况,原来30天的计算量,现在10个小时就可以完成。NVIDIA给了我们很多支持,我们要做成世界第一,最后我们也实现了。
  在谈到DeepID人脸识别技术的市场化时,汤晓鸥教授认为它将有助于提升智慧城市的实现速度。不过他也谈到目前该项技术还仅限于小众范围应用,大规模的普及还需要市场的检验。
  来源:海鑫科金 官网

海鑫科金 官网的新闻中心的行业动态有很多类似科普性质的文章。本回答被提问者和网友采纳

多维活体检测,让人脸识别更安全

今年的315晚会提到人脸识别领域的安全风险,主持人用现场合成的视频通过了活体检测和人脸验证,因此人脸识别的安全性引起大众关注。对于活体检测的安全隐患,腾讯优图团队一直保持高度关注,并依托多年积累的技术能力和业务运营经验,已经对人脸识别技术手段进行过多次安全升级,让人脸识别更安全。

一、目前人脸识别常见攻击手段有什么?

1 、纸片翻拍,通过打印用户的照片进行攻击;
2、 屏幕翻拍,一些3D建模技术可以驱动用户的单张照片或视频做出系统要求的摇头、张嘴、眨眼等动作;
3、 用户戴面具;

二、如何应对人脸识别漏洞?

要更有效地应对上述的人脸识别漏洞,我们不妨采用腾讯优图多维活体监测模式。

腾讯优图的多维活体监测是什么?

即通过更加复杂的多数字随机唇语,捕捉人在说话过程中嘴部的细微变化,使得视频合成造假的难度很大;并加上语音图像同步检测、人脸纹理分析、面具检测、视频防翻拍等多维度防护手段;最后将所有这些手段进行交叉融合,实现移动端+后台的强力防护体系。

具体来说:

1、对于纸片翻拍,由于纸片上的人脸是静态的,利用随机数字唇语,让用户读数字,就可以很好的拦截;

2、对于屏幕翻拍,具有成本低,可以通过软件批量执行的特点,对于活体的挑战最大,这种攻击,仍然有很多线索可以利用:

a. 翻拍的视频一定会通过显示设备播放出来,显示设备存在一些和真人不同的图像特征
b.合成的视频与真人相比,会存在一些瑕疵
c.如果是直接拿到了用户的一段视频,其嘴型变化完全符合给定的随机数字的概率很低

以上这些,用大量数据就可以学习到伪造视频和真人视频之间的区别,加上各种方法的融合,就能将拦截成功率提高到非常高的水平。

3、对于用户戴面具,由于其攻破成本较高,现在还未出现实际case,我们也提前进行了研发布防,主要利用人说话时,面部会存在比较自然的微动,而面具则没有这样的规律来防范。

另外,在实际业务中,人脸识别只是作为其中一个环节,需要与账号、密码保护、基于大数据的风控等其他综合手段一起,保证流程的高度安全。

人脸识别技术正在快速发展之中,新技术的出现总可能会被不法分子所利用。腾讯优图也在关注技术对抗,通过业务持续积累的活体攻防实战经验,构筑活体检测的坚实壁垒,同时不断创新研发新的活体检测技术,为人脸识别保驾护航。

三、腾讯优图人脸识别产品介绍

1. 产品优势

强大的人脸训练模型:立足于腾讯社交数据大平台收集的海量人脸训练集,成功标注的千万人脸数据。
方法最全:高维LBP、PCA、LDA 联合贝叶斯、度量学习、迁移学习、深度神经网络
技术最好: 优图独创Uface深度人脸模型,LFW评测以99.65%目前世界领先。

2. 人脸验证技术(1:1识别)

人脸识别技术可以计算出两张人脸照片的相似度,从而判断是否为同一人,即1:1身份验证。优图人脸识别通过传统方法和深度学习技术结合,以微众银行远程核身为基础,实际业务中,万分之一错误率下,通过率达到95%。
技术分享

3. 人脸检索技术(1:N识别)

给定一张照片,和数据库中N个人脸进行对比,给出是否为其中某一个人,或者给出排序结果,即人脸检索。1:N用于用户不需要声明身份的场景。

人脸检索
技术分享

4.技术指标

? FAR:False Accept Rate,错误接受率,指将身份不同的两张照片,判别为相同身份,越低越好
? FRR:False Reject Rate,错误拒绝率,指将身份相同的两张照片,判别为不同身份,越低越好
这两个指标有明确的物理意义,FAR决定了系统的安全性,FRR决定了系统的易用程度,在实际中,FAR对应的风险远远高于FRR,因此,生物识别系统中,会将FAR设置为一个非常低的范围,如万分之一甚至百万分之一,在FAR固定的条件下,FRR低于5%,这样的系统才有实用价值。
? 支持最小人脸尺寸64x64
? 人脸特征尺寸1-2KB
? 1:1人脸对比500ms

5. 常见的应用场景

门禁系统:
受安全保护的地区可以通过人脸识别辨识试图进入者的身份,比如小区、学校、企业等。敏感地点也可以使用人脸识别门禁,未登记人员访问将触发报警。

摄像监视系统:
在例如银行、机场、体育场、商场、超级市场等公共场所对人群进行监视,以达到身份识别的目的。同时疑犯布控追踪也是较为常见的应用场景。

学生考勤系统:
香港及澳门的中、小学已开始将智能卡配合人脸识别来为学生进行每天的出席点名记录,内地高校也进行了有关试点。

娱乐应用:
自动美妆美图、人脸属性识别、颜值分析,都是已经成熟使用的娱乐场景。

相关推荐
腾讯优图相关产品文档


此文已由作者授权腾讯云技术社区发布,转载请注明文章出处,获取更多云计算技术干货,可请前往腾讯云技术社区

欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~



















以上是关于人脸识别技术有啥优势和隐患的主要内容,如果未能解决你的问题,请参考以下文章

人脸识别技术都有哪些优势呢?

人脸识别存在哪些风险?

办理银行卡搞人脸识别有啥作用

多维活体检测,让人脸识别更安全

多维活体检测,让人脸识别更安全

数码相机中的人脸检测有啥作用?使用人脸对焦的技巧和方法是啥?