十大排序算法思想与 Python 实现 #私藏项目实操分享#
Posted 宇宙之一粟
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了十大排序算法思想与 Python 实现 #私藏项目实操分享#相关的知识,希望对你有一定的参考价值。
排序算法
现在越来越卷的互联网面试,排序算法也是常考的方向之一,而在这些算法当中。一般排序算法最常考的:快速排序和归并排序。
因为这两个算法体现了分治算法思想的核心观点,而且还有很多出题的可能。本篇文章就从算法思想和Python 代码实现上带读者快速过完整个经典排序算法。
更多细节请参考刘宇波老师的:不能白板编程红黑树就是基础差?别扯了。
1. 常见的排序算法
排序算法很多,除了能写出常见排序算法的代码,还需要了解各种排序的时空复杂度、稳定性、使用场景、区别等。
1.1 选择排序
1.1.1 思想
对于给定的一组序列,第一轮比较选择最小(或最大)的值,然后将该值与索引第一个进行交换;接着对不包括第一个确定的值进行第二次比较,选择第二个记录与索引第二个位置进行交换,重复到只剩最后一个记录位置。
案例:幼儿园排队,老师先让站成一队,带第一个小朋友依此跟其他小朋友逐个比较,选出个子最矮的,然后依此进行
1.1.2 实现
def selection_sort(gList):
"""选择排序
:param gList: 给定的一组序列
:return: 返回排好序的序列
"""
length = len(gList)
for i in range(length - 1):
flag = i
for j in range(i+1, length):
if gList[flag] > gList[j]:
flag = j
# 如果最小值的索引与最小值相对应,则无需再次交换
if flag != i:
gList[flag], gList[i] = gList[i], gList[flag]
return gList
1.1.3 选择排序分析
- 时间复杂度: 最好、最坏、平均的时间复杂度都为O(n^2)
- 空间复杂度: O(1)
- 稳定性: 不稳定
1.2 冒泡排序
1.2.1 思想
对于给定的一组序列含n个元素,从第一个开始对相邻的两个记录进行比较,当前面的记录大于后面的记录,交换其位置,进行一轮比较和换位之后,最大记录在第n个位置;然后对前(n-1)个记录进行第二轮比较;重复该过程直到进行比较的记录只剩下一个时为止。
案例:冒泡,像气泡一样往上升
1.2.2 实现
def bubble_sort(gList):
"""冒泡排序"""
length = len(gList)
for i in range(length):
for j in range(i+1, length):
if gList[i] > gList[j]:
gList[i], gList[j] = gList[j], gList[i]
return gList
1.2.3 冒泡排序分析
- 时间复杂度:
- 最好时间复杂度:O(n)
- 最坏时间复杂度: O(n^2)
- 平均时间复杂度: O(n^2)
- 空间复杂度: O(1)
- 稳定性: 稳定的排序
1.3 插入排序
1.3.1 思想
对于给定的一组记录,初始时假设第一个记录自成一个有序序列,其余的记录为无序序列;接着从第二个记录开始,按照记录的大小依次将当前处理的记录插入到其之前的有序序列中,直至最后一个记录插入到有序序列中为止。
案例:抓扑克牌
1.3.2 实现
def insertion_sort(gList):
"""插入排序"""
length = len(gList)
for i in range(1, length):
temp = gList[i] # 当前的待插入的值
j = i - 1 # 前一个值
while j >= 0:
if gList[j] > temp:
gList[j+1] = gList[j] # 插入的动作
gList[j] = temp # 插入完毕
j -= 1
return gList
1.3.3 插入排序分析
- 时间复杂度
- 最好时间复杂度:O(n)
- 最坏时间复杂度: O(n^2)
- 平均时间复杂度: O(n^2)
- 空间复杂度: O(1)
- 稳定性: 稳定的排序
1.4 归并排序 ☆☆★
1.4.1 思想
利用递归与分治技术将数据序列划分成为越来越小的半子表,再对半子表排序,最后再用递归步骤将排好序的半子表合并成为越来越大的有序序列。其中“归”代表的是递归的意思,即递归地将数组折半地分离为单个数组。
给定一组序列含n个元素,首先将每两个相邻的长度为1的子序列进行归并,得到n/2(向上取整)个长度为2或1的有序子序列,再将其两两归并,反复执行此过程,直到得到一个有序序列为止。
1.4.2 实现
def merge_sort(gList: list) -> list:
"""归并排序
:param gList: 给定序列
:return: 升序排列后的集合
"""
def merge(left: list, right: list) -> list:
"""merge left and right
:param left: left list
:param right: right list
:return: merge reslut
"""
i, j = 0, 0
result = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result += left[i:]
result += right[j:]
return result
if len(gList) <= 1:
return gList
num = len(gList) // 2
left = merge_sort(gList[:num])
right = merge_sort(gList[num:])
return merge(left, right)
if __name__ == __main__:
gList = [3, 5, 2, 4, 1]
print("----排序前:", gList)
print("----归并排序后: ", merge_sort(gList))
1.4.3 归并排序分析
- 时间复杂度: 最好、最坏和平均情况O(nlogn)
- 空间复杂度: O(n)
- 稳定性: 稳定
题目:100个有序数列如何合成一个大数组?
1.5 快速排序☆★★
1.5.1 思想
高效的排序算法,它采用**“分而治之”的思想,把大的拆分为小的,小的再拆分为更小的。其原理**是:对于一组给定的记录,通过一趟排序后,将原序列分为两部分,其中前部分的所有记录均比后部分的所有记录小,然后再依次对前后两部分的记录进行快速排序,递归该过程,直到序列中的所有记录均有序为止。
1.5.2 实现
# -*- coding: utf-8 -*-
def quick_sort(gList, left=0, right=None) -> list:
"""快速排序
:param gList: 给定一组序列
:param left:
:param right:
:return: 升序排序后的序列
"""
if right is None:
right = len(gList)-1
if left > right:
return gList
key = gList[left]
low 十大经典排序(下)——Python3实现