哈希算法篇 - 布隆过滤器#yyds干货盘点#
Posted JavaPub
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了哈希算法篇 - 布隆过滤器#yyds干货盘点#相关的知识,希望对你有一定的参考价值。
之前写了个布隆过滤器,用于千万级新闻 url 去重。如果不了解可以看这里: 布隆过滤器:公众号地址随时看
如果建立写了布隆过滤器,大家在面试的时候,肯定都会被问到Hash的知识,以下是面试场景:
- 你用的哈希函数是什么?
- 你还知道哪些哈希函数?
@[toc]
前言
本文继上一篇布隆过滤器续写 :
多种哈希函数介绍
常用的字符串Hash函数还有ELFHash,APHash等等,都是十分简单有效的方法。这些函数使用位运算使得每一个字符都对最后的函数值产生影响。另外还有以MD5和SHA1为代表的杂凑函数,这些函数几乎不可能找到碰撞。
常用字符串哈希函数有 BKDRHash,APHash,DJBHash,JSHash,RSHash,SDBMHash,PJWHash,ELFHash 等等。对于以上几种哈希函数,我对其进行了一个小小的评测。
其中数据1为100000个字母和数字组成的随机串哈希冲突个数。数据2为100000个有意义的英文句子哈希冲突个数。数据3为数据1的哈希值与1000003(大素数)求模后存储到线性表中冲突的个数。数据4为数据1的哈希值与10000019(更大素数)求模后存储到线性表中冲突的个数。
经过比较,得出以上平均得分。平均数为平方平均数。可以发现,BKDRHash无论是在实际效果还是编码实现中,效果都是最突出的。APHash也是较为优秀的算法。DJBHash,JSHash,RSHash与SDBMHash各有千秋。PJWHash与ELFHash效果最差,但得分相似,其算法本质是相似的。
在信息修竞赛中,要本着易于编码调试的原则,个人认为BKDRHash是最适合记忆和使用的。
代码
C代码
附:各种哈希函数的C语言程序代码
unsigned int SDBMHash(char *str)
{
unsigned int hash = 0;
while (*str)
{
// equivalent to: hash = 65599*hash + (*str++);
hash = (*str++) + (hash << 6) + (hash << 16) - hash;
}
return (hash & 0x7FFFFFFF);
}
// RS Hash Function
unsigned int RSHash(char *str)
{
unsigned int b = 378551;
unsigned int a = 63689;
unsigned int hash = 0;
while (*str)
{
hash = hash * a + (*str++);
a *= b;
}
return (hash & 0x7FFFFFFF);
}
// JS Hash Function
unsigned int JSHash(char *str)
{
unsigned int hash = 1315423911;
while (*str)
{
hash ^= ((hash << 5) + (*str++) + (hash >> 2));
}
return (hash & 0x7FFFFFFF);
}
// P. J. Weinberger Hash Function
unsigned int PJWHash(char *str)
{
unsigned int BitsInUnignedInt = (unsigned int)(sizeof(unsigned int) * 8);
unsigned int ThreeQuarters = (unsigned int)((BitsInUnignedInt * 3) / 4);
unsigned int OneEighth = (unsigned int)(BitsInUnignedInt / 8);
unsigned int HighBits = (unsigned int)(0xFFFFFFFF) << (BitsInUnignedInt - OneEighth);
unsigned int hash = 0;
unsigned int test = 0;
while (*str)
{
hash = (hash << OneEighth) + (*str++);
if ((test = hash & HighBits) != 0)
{
hash = ((hash ^ (test >> ThreeQuarters)) & (~HighBits));
}
}
return (hash & 0x7FFFFFFF);
}
// ELF Hash Function
unsigned int ELFHash(char *str)
{
unsigned int hash = 0;
unsigned int x = 0;
while (*str)
{
hash = (hash << 4) + (*str++);
if ((x = hash & 0xF0000000L) != 0)
{
hash ^= (x >> 24);
hash &= ~x;
}
}
return (hash & 0x7FFFFFFF);
}
// BKDR Hash Function
unsigned int BKDRHash(char *str)
{
unsigned int seed = 131; // 31 131 1313 13131 131313 etc..
unsigned int hash = 0;
while (*str)
{
hash = hash * seed + (*str++);
}
return (hash & 0x7FFFFFFF);
}
// DJB Hash Function
unsigned int DJBHash(char *str)
{
unsigned int hash = 5381;
while (*str)
{
hash += (hash << 5) + (*str++);
}
return (hash & 0x7FFFFFFF);
}
// AP Hash Function
unsigned int APHash(char *str)
{
unsigned int hash = 0;
int i;
for (i=0; *str; i++)
{
if ((i & 1) == 0)
{
hash ^= ((hash << 7) ^ (*str++) ^ (hash >> 3));
}
else
{
hash ^= (~((hash << 11) ^ (*str++) ^ (hash >> 5)));
}
}
return (hash & 0x7FFFFFFF);
}
Java代码:BKDR Hash
本篇主要介绍 BKDR Hash
package temp;
/**
* JavaPub
*/
import java.util.HashMap;
import java.util.Map;
import java.util.UUID;
public class BKDRHash {
public static int seed = 31; // 31 131 1313 13131 131313 etc..
public static int getHashCode(String str) {
int hash = 0;
for (int i = 0; i != str.length(); ++i) {
char c = str.charAt(i);
hash = seed * hash + c;
}
return hash;
}
public static void main(String[] args) {
int length = 100000;
String str1 = "https://gitee.com/rodert/JavaPub";
System.out.println("str1 :" + str1.hashCode() + " system");
System.out.println("str1 :" + getHashCode(str1) + " custom");
Map<String, String> map = new HashMap<String, String>();
for (int i = 0; i != length; ++i) {
String str = UUID.randomUUID().toString();
map.put(getHashCode(str) + "", str);
}
System.out.println("冲突数为: " + (length - map.size()));
}
}
ELF Hash详细分析
// ELF Hash Function
unsigned int ELFHash(char *str)
{
unsigned int hash = 0;
unsigned int x = 0;
while (*str)
{
hash = (hash << 4) + (*str++);//hash左移4位,当前字符ASCII存入hash
if ((x = hash & 0xF0000000L) != 0)
{//如果最高的四位不为0,则说明字符多余7个,如果不处理,再加第九个字符时,第一个字符会被移出,因此要有如下处理。
//该处理,如果对于字符串(a-z 或者A-Z)就会仅仅影响5-8位,否则会影响5-31位,因为C语言使用的算数移位
hash ^= (x >> 24);
//清空28-31位。上面其实就是把即将删除的高四位和低5-8位运算一次,和 hash = (hash << 4) + (*str++); 效果相同
hash &= ~x;
}
}
//返回一个符号位为0的数,即丢弃最高位,以免函数外产生影响。(我们可以考虑,如果只有字符,符号位不可能为负)
return (hash & 0×7FFFFFFF);
详解 ELF Hash
文字一点都不多,认真阅读理解透彻,大有裨益
ELFhash 函数在 UNIX 系统 V 版本4 中的“可执行链接格式 ”( Executable and Linking Format,即ELF ) 中会用到,ELF 文件格式用于存储可执行文件与目标文件。ELFhash 函数是对字符串的散列。它对于长字符串和短字符串都很有效,字符串中每个字符都有同样的作用,它巧妙地对字符的 ASCII 编码值进行计算,ELFhash函数对于能够比较均匀地把字符串分布在散列表中。
说明:unsigned int hash = 0; unsigned int x = 0;
定义无符号整数,在进行位运算时无需考虑符号位的影响,左移和右移均补位0
int 为32位 ,即 00000000 00000000 00000000 00000000
hash = (hash << 4) + (*str++);//hash 左移4位,当前字符 ASCII 存入 hash
例,如果 hash 为2时,(hash << 4)操作后,放大16(2的4次方)倍;然后加上 (*str++),(*str++) 为8位的字符,所以对 4-7 为有影响,其后四位添到hash左移空出的四位。
if ((x = hash & 0xF0000000L) != 0)
0xF0000000L 表示28-31位这4位是1,后28为均为0的长整型(L),该操作的结果为 x 保存 hash 的高4位
& 按位与 如果两个相应的二进制位都为 1,则该位的结果值为1,否则为0
hash ^= (x >> 24);
首先x的拷贝进行右移23位的操作,然后与hash进行异或操作。
右移后X的值为 00000000 00000000 00000000 ****0000 ;**** 为 hash 的高四位
^ 按位异或 若参加运算的两个二进制位值相同则为 0,否则为 1
hash &= ~x;
有 if ((x = hash & 0xF0000000L) != 0),x 保存着hash 的高四位,虽然进行右移操作,但不会改变x的值,而是对副本进行操作。经过 hash &= ~x; hash 的高四位被清空。
//返回一个符号位为0的数,即丢弃最高位,以免函数外产生影响。(我们可以考虑,如果只有字符,符号位不可能为负)
return (hash & 0×7FFFFFFF);
总结
简单来说:函数使用位运算使得每一个字符都对最后的函数值产生影响。
布隆过滤器的哈希函数原理就写到这里,希望大家看完之后以后面试碰到这题会没有困难!
另外,写原创技术文章不易,要花费好多时间和精力,希望大家看到文章也能有所收获!你们的点赞和收藏就能成为我继续坚持输出原创文章的动力!
以上是关于哈希算法篇 - 布隆过滤器#yyds干货盘点#的主要内容,如果未能解决你的问题,请参考以下文章
#yyds干货盘点#使用Java实现一致性hash算法(consistent hashing)「上」
#yyds干货盘点# springcloud整合gateway实现网关全局过滤器功能