Pandas学习笔记02- 数据处理高阶用法
Posted 恒生LIGHT云社区
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Pandas学习笔记02- 数据处理高阶用法相关的知识,希望对你有一定的参考价值。
概述
Pandas 是基于 NumPy 构建的库,在数据处理方面可以把它理解为 NumPy 加强版,同时 Pandas 也是一项开源项目。它用于数据挖掘和数据分析,同时也提供数据清洗功能。
在本文中,主要介绍Pandas在数据处理中的高阶用法,包括:数据的合并、分组和拆分等用法。如果学过数据库的SQL语法,本文理解起来会非常快。
数据合并
数据准备
首先定义一个 DataFrame
数据集:
import pandas as pd
df_a = pd.DataFrame(columns=[name, rank], data=[[C, 1], [java, 2], [python, 3], [golang, 4]])
df_b = pd.DataFrame(columns=[name, year], data=[[java, 2020], [python, 2021], [golang, 2022]])
通过 merge()
方法能对DataFrame数据集进行合并,通过内连接、外连接、左连接、右连接等方式,如下实例:
merge方法默认是内连接取交集,通过 how
指定连接类型,on
指定连接字段
# 通过指定 columns 中的 name 内连接
df_tmp = pd.merge(df_a, df_b, on=name, how=outer)
print(df_tmp)
# ========打印========
name rank year
0 java 2 2020
1 python 3 2021
2 golang 4 2022
# 通过指定 columns 中的 name 左连接
df_tmp = pd.merge(df_a, df_b, on=name, how=left)
print(df_tmp)
# ========打印========
name rank year
0 C 1 NaN
1 java 2 2020.0
2 python 3 2021.0
3 golang 4 2022.0
# 通过指定 columns 中的 name 右连接
df_tmp = pd.merge(df_a, df_b, on=name, how=right)
print(df_tmp)
# ========打印========
name rank year
0 java 2 2020
1 python 3 2021
2 golang 4 2022
# 如果合并两个 DataFrame 不含公共的 columns ,可以直接指定匹配的字段
df_c = pd.DataFrame(columns=[name1, year], data=[[java, 2020], [python1, 2021], [golang1, 2022]])
df_tmp = pd.merge(df_a, df_c, left_on=name, right_on=name1)
print(df_tmp)
# ========打印========
name rank name1 year
0 java 2 java 2020
数据分组
数据准备
首先定义一个 DataFrame
数据集:
import pandas as pd
df_a = pd.DataFrame(columns=[name, nums], data=[[python, 1], [java, 2], [python, 3], [java, 4]])
通过 group()
方法能对DataFrame数据集进行分组操作,分组后还能进行求和、取平均值等操作,如下实例:
# 获取分组后的数据集中每个数据的数量
df_tmp = df_a.groupby(name).size()
print(df_tmp)
# ========打印========
name
java 2
python 2
dtype: int64
# 将分组后的数据集,根据 nums 字段进行求和
df_tmp = df_a.groupby(name)[nums].sum()
print(df_tmp)
# ========打印========
name
java 6
python 4
Name: nums, dtype: int64
# 获取分组后的数据集的大小
df_tmp = df_a.groupby(name).size()
print(df_tmp)
# ========打印========
name
java 3
python 2
Name: nums, dtype: int64
数据拆分
数据准备
首先定义一个 DataFrame
数据集:
import pandas as pd
df_a = pd.DataFrame(columns=[name, rank], data=[[C_no1, 1], [java_no2, 2], [python_no3, 3], [golang, 4]])
通过 split()
方法能对DataFrame数据集中某列数据进行拆分操作,如下实例:
# 数据拆分,对 columns 中的某列的数据某个符号匹配拆分,expand:为True可以直接将分列后的结果转换成DataFrame
df_tmp = df_a[name].str.split(_, 1, expand=True)
print(df_tmp)
# ========打印========
0 1
0 C no1
1 java no2
2 python no3
3 golang None
# 数据拆分,对拆分后的数据再次与原数据合并
df_tmp = pd.merge(df_a, df_a[name].str.split(_, 1, expand=True), how=left, left_index=True, right_index=True)
print(df_tmp)
# ========打印========
name rank 0 1
0 C_no1 1 C no1
1 java_no2 2 java no2
2 python_no3 3 python no3
3 golang 4 golang None
数据可视化
在使用 Pandas 处理数据的过程中,为了更直观的展示数据的线性关系,我们可以引入 matplotlib
库将我们的数据变成相关图形
# plot() 方法生成相应的线性图形
df_a = pd.DataFrame(columns=[name, rank], data=[[C_no1, 1], [java_no2, 2], [python_no3, 3], [golang, 4]])
df_a.plot()
总结
本文主要介绍 Pandas 工具集的高阶操作,操作原理与数据库中的SQL有着异曲同工之妙,能够帮助我们解决日常数据的分析处理等操作。
以上是关于Pandas学习笔记02- 数据处理高阶用法的主要内容,如果未能解决你的问题,请参考以下文章