模拟退火算法案例记录(附带详细源码)
Posted 一大口奶酪
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了模拟退火算法案例记录(附带详细源码)相关的知识,希望对你有一定的参考价值。
clc;clear;
%--------------------------------------------------------------------------参数初始化
Species_Sum=6;%类别总数
Sample_Sum=37;%每一类中样本的个数,注每一类的样本数必须相等
Parameter_Sum=3;%表示样本的参数总数,也是特征向量的维数
A(1)=1;A(2)=4;A(3)=6;
Probability=1/Species_Sum;%概率,因为每类中样本数相等,所以概率也相同
Y=zeros(Species_Sum,Sample_Sum,Parameter_Sum);
%--------------------------------------------------------------------------
%输入x矩阵,每一行为一个种类的样本的一个特征参数组成的向量。
X(1,:,:)=[0.358529007 0.470763431 -0.131309931 -0.145074893 -0.064072281 -0.061541157 0.014845917 0.023062398 0.008726998 0.018917906 0.000834543 0.006315644 ;
0.361896224 0.474518892 -0.13576458 -0.145361367 -0.069529894 -0.058290456 0.01060627 0.020365401 0.011349387 0.019479625 0.002739086 0.007990097 ;
0.365855762 0.478135634 -0.140809493 -0.153837682 -0.07516449 -0.063922481 0.018661834 0.025180186 0.017064225 0.021985796 0.002799852 0.004048059 ;
0.267228779 0.544734499 -0.155060147 -0.131730449 -0.06508012 -0.021114895 0.020921947 -0.006398453 0.007855685 0.031399502 0.007593713 -0.000351574 ;
0.251889387 0.521883985 -0.094154287 -0.142894766 -0.059894566 -0.036815447 0.022377783 0.005082287 0.029394932 -0.000933956 0.007022193 -0.002959058 ;
0.310684785 0.516067821 -0.116689539 -0.149023219 -0.059627722 -0.00066641 -0.018115774 -0.007546053 0.024048894 -0.013078086 0.009116263 0.004826709 ;
0.284949136 0.546212778 -0.190536585 -0.104378177 -0.080469471 -0.026421196 0.000861152 0.020535761 0.011366234 0.034521692 0.001753972 0.001602747 ;
0.420853283 0.510890184 -0.193156747 -0.193390725 -0.073916998 -0.026357435 0.003498716 0.009759206 0.017434871 0.019242925 0.002087638 0.003046195 ;
0.422563355 0.526719609 -0.21759055 -0.190825681 -0.101101435 -0.036969543 0.008473727 0.021499734 0.025684718 0.036799589 0.00166145 0.003077889 ;
0.279216362 0.539619357 -0.096232214 -0.164842432 -0.078229659 -0.017031487 0.004917876 -0.001770692 0.032789985 -0.008267266 0.006669014 0.003159271 ;
0.261001642 0.513675191 -0.113464709 -0.100448253 -0.043824864 -0.031391063 -0.000299346 0.002900054 -0.004799753 -0.005694249 0.012554398 0.009788332 ;
0.264003662 0.503204425 -0.064033421 -0.159572656 -0.042742167 -0.037611711 0.027719558 -0.006516778 0.019866148 -0.010877286 0.005715891 0.000842167 ;
0.258427854 0.521714153 -0.065942744 -0.165712845 -0.071904142 -0.04349984 0.015147476 0.007328876 0.037032779 -0.005029466 0.005141786 0.007294385 ;
0.272176738 0.552974263 -0.16021116 -0.133775644 -0.073015881 -0.021214027 0.022266935 -0.006851358 0.007689529 0.033883381 0.007163122 -0.001088225 ;
0.230940372 0.501670621 -0.150764621 -0.061315872 -0.0387379 -0.035670461 0.010520474 0.003518041 -0.012822101 0.03557202 0.006996811 0.010091172 ;
0.255827865 0.514589572 -0.067164668 -0.164585229 -0.041900338 -0.045859572 0.018270189 0.008246547 0.030288176 -0.020228331 0.009003499 0.003510642 ;
0.257561377 0.528180461 -0.083888935 -0.151521837 -0.05844471 -0.032391032 0.004887429 0.014729388 0.032826226 -0.017594468 0.004505102 0.001150188 ;
0.231354345 0.513802027 -0.146851045 -0.060120585 -0.052631544 -0.028088043 0.011433637 -0.00334154 -0.014093675 0.033576715 0.008655868 0.006302654 ;
0.296509841 0.566371656 -0.190775105 -0.115324487 -0.103558271 -0.026362078 0.003846811 0.008414015 0.010404812 0.042678628 0.003526236 0.004263113 ;
0.236425959 0.533334926 -0.105444241 -0.126559488 -0.075963277 -0.053742313 0.015162338 0.019675772 0.026041242 0.013379821 0.00933117 0.008357212 ;
0.256095446 0.529533864 -0.105138125 -0.140455129 -0.060865002 -0.049752114 0.018205469 0.011974571 0.019310699 0.006782826 0.007865503 0.006440348 ;
0.227580149 0.508489698 -0.141946268 -0.073737022 -0.051286363 -0.04166986 0.016388077 0.009482258 -0.003851397 0.036177507 0.007177632 0.007193871 ;
0.4212582 0.495313465 -0.210387383 -0.151932464 -0.067116737 -0.053403237 0.003239178 0.025323725 0.005358247 0.018580172 0.002187946 0.01157532 ;
0.424681902 0.497794398 -0.218241827 -0.148738811 -0.080637633 -0.04979433 0.003038052 0.021958007 0.006054456 0.03042999 0.003148578 0.010302036 ;
0.233049263 0.589506271 -0.149820967 -0.099788822 -0.113221828 -0.019650537 0.006484164 0.002003329 0.010748407 0.032627161 0.007751864 0.000306024 ;
0.241515154 0.516586756 -0.073360381 -0.139164814 -0.057812098 -0.038221519 0.011223822 0.007006906 0.028587727 -0.009433182 0.008211003 0.004860879 ;
0.34159149 0.523781096 -0.169754365 -0.146562519 -0.097005751 -0.056722506 0.010890636 0.028839805 0.018888733 0.030565232 0.002967028 0.012518666 ;
0.353662583 0.502148204 -0.199720391 -0.110789848 -0.098307583 -0.057024997 0.011056696 0.03060834 0.015777556 0.043218678 0.000774658 0.008591562 ;
0.385952153 0.50647538 -0.203149917 -0.142081993 -0.100830968 -0.060624263 0.020250357 0.027987269 0.016984913 0.044533884 -0.002560535 0.007059106 ;
0.264917741 0.528280933 -0.164794567 -0.110007308 -0.061210745 -0.038864799 0.016427129 0.014032792 0.008349254 0.03535851 0.003775395 0.003732411 ;
0.261136807 0.531405309 -0.152767484 -0.10826334 -0.06737426 -0.039342209 0.017624663 0.014765297 0.011589837 0.027976146 0.004823435 -0.001575346 ;
0.402976847 0.525840448 -0.172038762 -0.21584681 -0.122003981 -0.077844438 0.037194054 0.024321155 0.0453987 0.03280175 0.011901868 0.007295727 ;
0.383003835 0.516808062 -0.179493667 -0.17414387 -0.106827811 -0.065008453 0.014267029 0.036143478 0.025418164 0.034079287 0.004699614 0.011050328 ;
0.32626372 0.519363067 -0.175748912 -0.13654473 -0.108683913 -0.056200926 0.01891009 0.034812654 0.022775294 0.047858485 0.002383084 0.004808465 ;
0.398710614 0.499520875 -0.212281482 -0.146599729 -0.087494467 -0.063208545 0.019439084 0.028288014 0.014089739 0.042464942 0.000114132 0.006952573 ;
0.255589701 0.530882769 -0.09409918 -0.131242727 -0.064358367 -0.030902829 0.007024238 0.000466316 0.013553317 -0.006438347 0.012227735 0.007296509 ;
0.26316158 0.55002294 -0.197739337 -0.083494012 -0.082040021 -0.014356586 0.012305435 -0.000674054 0.005740176 0.047071478 0.006829577 -0.006829242 ;
];
X(2,:,:)=[0.220299207 0.523677713 -0.139775969 -0.077978521 -0.077333654 -0.042742213 0.012871537 0.021262043 0.016389666 0.03484591 0.003718512 0.00475959 ;
0.356646402 0.48551956 -0.168238442 -0.124205812 -0.084464096 -0.061589554 0.016844302 0.033276398 0.013541997 0.022727881 0.004088859 0.005849201 ;
0.359142837 0.481796344 -0.17278126 -0.121043477 -0.086205213 -0.054910361 0.009614327 0.029654989 0.012118982 0.028955858 0.004405158 0.009248678 ;
0.293613292 0.557695841 -0.126780937 -0.178610321 -0.129166271 -0.056070961 0.031523365 0.018426917 0.057958724 0.029248 0.003584184 -0.001430155 ;
0.396716592 0.484063257 -0.19333402 -0.143342103 -0.10190544 -0.086363202 0.01708821 0.044276618 0.017323554 0.04477947 0.006364356 0.014321998 ;
0.259360574 0.54128833 -0.088004272 -0.162133692 -0.087267767 -0.053151645 0.033811932 0.007189664 0.037117579 0.004565864 0.00820871 -0.000992267 ;
0.247870535 0.554765487 -0.081059266 -0.162987358 -0.090654208 -0.04220222 0.028181001 0.005401564 0.033989939 0.003089006 0.003620013 -0.000020859 ;
0.234806226 0.510890332 -0.0734097 -0.143464213 -0.074342928 -0.033632146 0.016982626 0.005498198 0.0409283 0.002453918 0.013420364 -0.00013484 ;
0.226362118 0.538245629 -0.086068764 -0.138652263 -0.086672938 -0.037986179 0.01542271 0.010919017 0.038559381 0.003745756 0.011529636 0.004592638 ;
0.253791848 0.547237992 -0.082560312 -0.168162057 -0.092481308 -0.052541685 0.037878562 0.008054836 0.043378478 0.003765369 0.006170483 -0.004538855 ;
0.237248864 0.553690131 -0.106369731 -0.130092143 -0.10490394 -0.039915802 0.013359859 0.016832749 0.037410184 0.012113489 0.008759689 0.001861178 ;
0.244672571 0.55002772 -0.118008479 -0.125762925 -0.099029551 -0.045357496 0.019827342 0.007461076 0.025407647 0.021434371 0.011325673 0.007998088 ;
0.240532381 0.526110259 -0.13088189 -0.115979024 -0.07920585 -0.048151275 0.020654166 0.021394527 0.021910912 0.031118647 0.006176789 0.006314557 ;
0.24610243 0.553613614 -0.117163762 -0.126738573 -0.100696138 -0.04563921 0.019205567 0.007818144 0.025698217 0.01919818 0.011192314 0.00740684 ;
0.22765721 0.553380088 -0.132371512 -0.105235575 -0.092405503 -0.038229567 0.017417704 0.004426926 0.017416893 0.03330266 0.008400093 0.006237735 ;
0.230981948 0.521961589 -0.119120117 -0.108302684 -0.083214478 -0.052384902 0.023250275 0.016186669 0.025388967 0.02989644 0.008344063 0.007003197 ;
0.293192197 0.541217642 -0.141383319 -0.129140507 -0.106363235 -0.052816341 0.008607279 0.024496907 0.029416575 0.01808012 0.007493917 0.007196345 ;
0.229759874 0.538445065 -0.070449203 -0.150820183 -0.086394139 -0.036279564 0.019757462 0.004317825 0.040772354 -0.001697993 0.011981205 0.000605867 ;
0.263697954 0.480346645 -0.082454482 -0.102636013 -0.048900746 -0.051042051 0.01300732 0.005526857 0.016958135 -0.018979674 0.017622296 0.006852829 ;
0.228550387 0.533561053 -0.087785856 -0.136140695 -0.09645237 -0.054000544 0.028457004 0.01628683 0.042266099 0.014463287 0.00782634 0.002966936 ;
0.22804176 0.548135226 -0.106824272 -0.131282526 -0.085398029 -0.05104368 0.019124816 0.016730084 0.037753123 0.010458028 0.010807698 0.003495579 ;
0.337262143 0.527280914 -0.190167739 -0.129427188 -0.11409456 -0.056171231 0.012944712 0.040349525 0.01944097 0.043679354 -0.001311815 0.010208433 ;
0.324785317 0.520733153 -0.176896856 -0.118560195 -0.106909139 -0.051998079 0.010598847 0.03469019 0.012347747 0.037577668 0.000754927 0.012871287 ;
0.235195912 0.510407729 -0.053599001 -0.166286615 -0.049929533 -0.024037205 0.017716201 -0.00905505 0.029432055 -0.006496001 0.011273656 0.005376224 ;
0.339867794 0.492712766 -0.161366438 -0.126698819 -0.086940854 -0.055705478 0.018921614 0.021554135 0.009612185 0.032850408 0.005282212 0.009902238 ;
0.192499405 0.528330832 -0.097986976 -0.096281261 -0.078569105 -0.038583228 0.016236165 0.007619178 0.024895178 0.022102295 0.012423025 0.007311051 ;
0.237146893 0.514605852 -0.027668078 -0.184522219 -0.059804571 -0.029584634 0.018265761 0.002273024 0.044428719 -0.017047397 0.001649603 0.00025367 ;
0.210269421 0.551832204 -0.076625814 -0.133573791 -0.089085001 -0.029013471 0.002451969 0.005236384 0.036011408 0.001507494 0.010619348 0.010368173 ;
0.268411782 0.522439134 -0.147149669 -0.14143116 -0.114503897 -0.035011472 0.019670338 0.024668368 0.045605883 0.04793355 0.004177976 0.005177752 ;
0.258982885 0.520802785 -0.142912781 -0.131570568 -0.104644957 -0.035473773 0.017980706 0.02303984 0.039699984 0.043185485 0.004355623 0.006544584 ;
0.254467412 0.506530652 -0.090896928 -0.125737768 -0.062524199 -0.053644292 0.022496321 0.010928868 0.030472775 -0.007274012 0.014620157 0.000555511 ;
0.263697954 0.480346645 -0.082454482 -0.102636013 -0.048900746 -0.051042051 0.01300732 0.005526857 0.016958135 -0.018979674 0.017622296 0.006852829 ;
0.226787887 0.541310655 -0.092951364 -0.133974937 -0.083609791 -0.044803273 0.012400983 0.012282829 0.038175075 0.006858963 0.011899286 0.005620534 ;
0.216450849 0.479974914 -0.045663973 -0.122545884 -0.043238274 -0.041451644 0.020423856 -0.000263004 0.025073463 -0.005681482 0.012449379 0.00446938 ;
0.25741272 0.514239105 -0.144370774 -0.107201637 -0.08226333 -0.047362522 0.016312805 0.028477613 0.022298603 0.036835283 0.000858129 0.004756667 ;
0.29429447 0.547233039 -0.148428487 -0.14092658 -0.105314978 -0.052935116 0.037384197 0.012694681 0.022637821 0.036272033 -0.000579231 -0.002339783 ;
0.245184396 0.551702171 -0.115780321 -0.14434879 -0.094185846 -0.052498336 0.033119657 0.015037358 0.026110359 0.030862862 0.002149878 0.002642029 ;
];
X(3,:,:)=[0.368518484 0.528918796 -0.20297562 -0.151021625 -0.070111239 -0.006936615 -0.010503049 0.008810201 -0.000623849 0.031041394 -0.003112555 0.00799257 ;
0.310854828 0.57070293 -0.193323808 -0.132558396 -0.102299512 -0.035841499 0.001961847 0.03188895 0.013337372 0.032326412 -0.002856864 0.005803093 ;
0.352106376 0.559715308 -0.204754082 -0.16034211 -0.090108463 0.011286018 -0.012558138 0.002264642 0.013740075 0.031155619 -0.003159297 0.000645987 ;
0.334119705 0.556153898 -0.199056332 -0.133669558 -0.085868708 0.01241385 -0.018226079 0.003438348 0.003651272 0.028691601 -0.004503373 0.002853498 ;
0.346120324 0.55867585 -0.209946307 -0.148285644 -0.093053493 0.006058943 -0.009677948 0.003585442 0.013597231 0.036589118 -0.001860468 -0.001806531 ;
0.34058279 0.558326036 -0.124340445 -0.223625705 -0.0923501 0.010082422 0.003615112 -0.016810016 0.048267359 -0.003239582 0.003076376 -0.003587141 ;
0.345366526 0.576498403 -0.190874867 -0.163552582 -0.119463011 -0.042614435 0.016923581 0.014833378 0.02524371 0.025241955 0.011641245 0.000747894 ;
0.336208695 0.5700809 -0.146653905 -0.201545697 -0.09871492 0.012384556 -0.001920915 -0.011860457 0.039536144 0.003179975 0.003922341 -0.004622997 ;
0.301778231 0.558018438 -0.161600499 -0.163113871 -0.100380857 -0.040071031 0.011210177 0.028452281 0.040653706 0.022739877 0.000218194 0.002089865 ;
0.325672677 0.588470714 -0.172756324 -0.187426322 -0.124867838 -0.066124046 0.04204702 0.015312541 0.034012006 0.035445145 0.009197185 0.001013525 ;
0.274094239 0.563966509 -0.095848222 -0.197408268 -0.099246646 -0.028220701 0.032540207 -0.001053224 0.050722929 0.003909242 0.004481598 -0.007938395 ;
0.293232693 0.569377278 -0.112074942 -0.19261262 -0.106720089 -0.048621778 0.030738546 0.003836797 0.0447508 0.002973468 0.01258777 0.002527353 ;
0.337450432 0.568949716 -0.128578211 -0.222941941 -0.100571497 0.004258399 0.011922723 -0.016861998 0.046204189 0.001384612 0.005153315 -0.006375284 ;
0.319237062 0.582035326 -0.204247769 -0.147859758 -0.10579241 -0.02480489 -0.000355306 0.025887391 0.013706146 0.043932767 -0.007392741 0.00565101 ;
0.22771488 0.560318534 -0.065285403 -0.170238042 -0.083864208 -0.031677294 0.023000716 -0.000491033 0.039312674 -0.006323691 0.006051794 0.001480429 ;
0.315249831 0.571186486 -0.166731749 -0.162932613 -0.097865516 -0.019568438 0.017383621 -0.001611595 0.013537059 0.029117056 0.002718323 -0.000484668 ;
0.28698493 0.573959879 -0.160553033 -0.143707712 -0.104571321 -0.057045898 0.024876301 0.015115568 0.019658907 0.027625538 0.012414806 0.005236953 ;
0.34334273 0.580607221 -0.150757297 -0.214468684 -0.113310491 -0.004368195 0.009816566 -0.007578624 0.050585842 0.002663719 0.009477078 -0.006016602 ;
0.284931331 0.565369135 -0.104148534 -0.192482951 -0.090997041 -0.03923437 0.023405885 0.00408694 0.04086468 -0.003122172 0.007655994 0.003665354 ;
0.323670469 0.58722772 -0.177442862 -0.170983697 -0.117731673 -0.045599832 0.026064126 0.012653086 0.028901634 0.023979846 0.011818282 -0.002563949 ;
0.326052787 0.582459357 -0.172777164 -0.176507652 -0.114328788 -0.061264699 0.02931466 0.019077396 0.028652926 0.022697022 0.013500278 0.003119126 ;
0.340105317 0.585984758 -0.137209382 -0.223052268 -0.12663652 -0.048802853 0.032263117 0.008384158 0.047719059 0.015108747 0.002840412 0.003290822 ;
0.327976164 0.592734391 -0.168692857 -0.183368711 -0.123234709 -0.060558487 0.026170425 0.023694697 0.026481734 0.024303445 0.006100717 0.008384722 ;
0.324621353 0.567290754 -0.145875559 -0.184825425 -0.104979381 -0.06227722 0.030866118 0.014805048 0.035555577 0.005225348 0.01716522 0.00242281 ;
0.333410657 0.58164774 -0.212104333 -0.137998915 -0.111742033 -0.009989655 -0.015423953 0.018974265 0.009480212 0.038631671 -0.003612625 0.008720962 ;
0.361281408 0.57173592 -0.14902809 -0.225423231 -0.097172097 0.00997918 0.000578143 -0.021647508 0.040202194 -0.000871217 0.01085896 -0.000499685 ;
0.316569377 0.564580649 -0.117622986 -0.196354503 -0.086967562 0.020548651 -0.011042271 -0.020037333 0.03414178 -0.013195554 0.008256788 0.001120074 ;
0.365537764 0.536989381 -0.184093208 -0.178334432 -0.085901885 -0.020315315 0.005618633 0.015086011 0.016892135 0.03182278 -0.004825829 0.00152002 ;
0.35695021 0.544337396 -0.190810015 -0.169517884 -0.078863118 -0.016401341 0.00225482 0.016231955 0.005391226 0.033365639 -0.00801651 0.005072163 ;
0.371050475 0.550245077 -0.193070029 -0.184632056 -0.084220923 -0.021212229 0.007537246 0.007916772 0.020083933 0.022735341 0.002358884 0.001202987 ;
0.377979705 0.52559121 -0.220962116 -0.144620155 -0.063029062 0.015931809 -0.025073489 0.000841339 -0.002186252 0.03286777 -0.004188032 0.006842299 ;
0.336397714 0.532614514 -0.160673824 -0.186282688 -0.085070775 -0.023858692 0.017195901 0.011497108 0.035598839 0.025647036 -0.000601335 -0.002467979 ;
0.35722635 0.572160537 -0.190519924 -0.196597836 -0.100303425 -0.058592826 0.024626884 0.028862906 0.025684085 0.032370372 -0.000903899 0.005979172 ;
0.335478656 0.548713262 -0.181986756 -0.159270865 -0.082372793 0.00899216 -0.001311638 -0.004617918 0.012001674 0.028754495 -0.001870566 -0.002513095 ;
0.384023669 0.532973437 -0.180115663 -0.19488701 -0.072855896 -0.005626473 -0.004805976 0.000602003 0.016759829 0.016486679 0.000395259 0.007047409 ;
0.309593208 0.577157357 -0.118834038 -0.20743908 -0.0970727 0.01437291 -0.003782232 -0.011075651 0.040507168 -0.003457317 -0.000026762 0.000053621 ;
0.309950473 0.577612889 -0.119640238 -0.208191609 -0.097449566 0.01426603 -0.001919788 -0.01218733 0.041548445 -0.003306915 0.001116057 -0.001801753 ;
];
X(4,:,:)=[0.354471668 0.558608337 -0.239410308 -0.191483251 -0.066236804 -0.100098241 0.041452769 0.058170339 0.030244995 0.055568856 -0.008811186 0.007497459 ;
0.386469188 0.565849092 -0.236251984 -0.199658226 -0.076087351 -0.090373992 0.036533085 0.04248083 0.01414759 0.048912693 -0.003077655 0.011039673 ;
0.404484772 0.560724253 -0.210491966 -0.238093605 -0.071823756 -0.097775826 0.051266201 0.032154132 0.034166323 0.025736487 0.007691477 0.001937689 ;
0.393424046 0.569952742 -0.212441074 -0.251008539 -0.08040867 -0.104375771 0.064280917 0.036514663 0.047598342 0.036979932 0.00345964 -0.003998273 ;
0.384859271 0.552757059 -0.215968321 -0.226217787 -0.063293991 -0.108580577 0.0511169 0.042291755 0.04015148 0.031142514 0.008736915 0.002974028 ;
0.377352883 0.568162662 -0.175502121 -0.274057749 -0.078702118 -0.096275469 0.070370626 0.021516457 0.070112588 0.01705602 0.013612162 -0.013669794 ;
0.334358582 0.558991113 -0.142410412 -0.255785628 -0.067375737 -0.091893402 0.069041406 0.025603596 0.060682326 0.01361454 0.009337601 -0.014185154 ;
0.354324312 0.562575652 -0.187274497 -0.228885737 -0.071119428 -0.089563347 0.047466478 0.040428282 0.049844601 0.023642472 0.003514074 -0.004974707 ;
0.336993172 0.568166785 -0.232486217 -0.195026746 -0.075679477 -0.101709132 0.049286275 0.056542518 0.039728785 0.060592507 -0.008888833 0.002449511 ;
0.376659047 0.573356615 -0.189191961 -0.269903868 -0.082034417 -0.09316533 0.063046734 0.030830437 0.064300122 0.029842587 0.004080434 -0.007843902 ;
0.444209628 0.521239362 -0.220611849 -0.250887048 -0.064239791 -0.108765894 0.053217481 0.049538828 0.054343493 0.026916546 0.001879364 -0.006877848 ;
0.532018988 0.502495517 -0.295378986 -0.20878656 -0.060902297 -0.114881111 0.021800166 0.068295425 0.004511641 0.04212124 -0.007220724 0.015907775 ;
0.372057607 0.57575153 -0.205779734 -0.232831264 -0.084342678 -0.089901245 0.050395556 0.03432089 0.048323642 0.029644077 0.005126598 -0.002786748 ;
0.325529911 0.582926552 -0.176536446 -0.231771882 -0.090804799 -0.094982685 0.06218432 0.036018678 0.053134768 0.039381654 0.00241133 -0.007511967 ;
0.523134536 0.533211333 -0.315757743 -0.228241054 -0.086782524 -0.120014462 0.026184062 0.085913753 0.027628228 0.060923114 -0.015922919 0.009696763 ;
0.384015898 0.563543902 -0.195193533 -0.228081844 -0.074008625 -0.091756854 0.042654234 0.029614435 0.036560075 0.017615159 0.012119791 0.002898379 ;
0.328262046 0.588174071 -0.212580879 -0.194056592 -0.096610717 -0.088690568 0.041675883 0.044778067 0.039920088 0.0491411 -0.003177041 0.003141793 ;
0.363487147 0.572785705 -0.181811764 -0.245867791 -0.081745368 -0.105411074 0.066611156 0.036548233 0.062851457 0.01325904 0.015323324 -0.01604462 ;
0.447640405 0.551223258 -0.255433075 -0.245005521 -0.076370857 -0.103318047 0.043484809 0.058051685 0.034089887 0.049549665 -0.00797982 0.004028618 ;
0.482648725 0.542302441 -0.246544792 -0.287049888 -0.077631178 -0.114645341 0.075031015 0.040357067 0.046164897 0.048486632 0.000402003 -0.009548182 ;
0.348292953 0.574401135 -0.169238992 -0.249595266 -0.081985027 -0.094778196 0.062898344 0.028279112 0.057969337 0.021883035 0.009928621 -0.008073408 ;
0.403236597 0.563854283 -0.215373736 -0.238590159 -0.074052305 -0.09304207 0.047714339 0.025521745 0.035740576 0.029021314 0.0117563 0.004192309 ;
0.515311248 0.533384148 -0.274830914 -0.26817844 -0.08449732 -0.103411116 0.036762112 0.050528865 0.043360813 0.048243132 -0.00313927 0.006436769 ;
0.349448164 0.57179628 -0.217358145 -0.205822431 -0.083067618 -0.089309416 0.04264196 0.044392751 0.048424735 0.039315743 0.003189678 -0.003680998 ;
0.388080423 0.568657191 -0.180128863 -0.274232411 -0.078370011 -0.090286311 0.064600975 0.017902175 0.063205696 0.016449095 0.014034763 -0.009934964 ;
0.38568231 0.562746671 -0.191591663 -0.234542402 -0.072386717 -0.078821689 0.044777182 0.020392597 0.037536437 0.016234947 0.012530145 -0.002581325 ;
0.48106296 0.532961565 -0.246067487 -0.280696061 -0.074948695 -0.104103641 0.070421741 0.03076157 0.04740824 0.049406767 0.003130856 -0.009368704 ;
0.372473032 0.57694229 -0.184514839 -0.255168382 -0.084633863 -0.098510073 0.057924149 0.038308747 0.060491604 0.016790164 0.005055951 -0.005174118 ;
0.393780178 0.564190687 -0.193386562 -0.233251875 -0.07311506 -0.082283873 0.040807919 0.028825632 0.032057164 0.013274821 0.006309293 0.002775314 ;
0.338323796 0.566717656 -0.223691998 -0.190930144 -0.073483719 -0.100841908 0.047298963 0.050136247 0.033327939 0.051629194 -0.003221724 0.00471398 ;
0.411953765 0.554894446 -0.255196483 -0.215494758 -0.066975305 -0.106176411 0.038891898 0.059405365 0.030983701 0.044354466 -0.00357934 0.006909162 ;
0.381615114 0.562703846 -0.20645105 -0.212570011 -0.072307242 -0.070916807 0.028825303 0.02674646 0.0280932 0.022545291 0.006565101 0.005132315 ;
0.398974187 0.564129306 -0.188462432 -0.265428097 -0.074553169 -0.097159999 0.062919348 0.02283909 0.050347634 0.018640474 0.0124396 -0.004710274 ;
0.401002218 0.565433889 -0.215489862 -0.217517572 -0.075653735 -0.073809384 0.035817277 0.021734947 0.022639003 0.02423889 0.008757987 0.002834233 ;
0.37977726 0.554631376 -0.173853756 -0.236602322 -0.063839287 -0.083565747 0.051032919 0.028510031 0.028751591 0.014159541 0.001491721 -0.000512187 ;
0.381920948 0.560430637 -0.234783201 -0.194509111 -0.06970997 -0.081156748 0.028557254 0.04028549 0.019091184 0.040923275 -0.000407509 0.009333947 ;
0.368691094 0.565314318 -0.230392632 -0.201325668 -0.073859624 -0.104054303 0.050603308 0.049918929 0.02231479 0.051680956 -0.006226415 0.00731454 ;
];
X(5,:,:)=[0.327579891 0.575559232 -0.15913694 -0.19917499 -0.086458232 -0.074168034 0.04149496 0.020504447 0.03611414 0.009544019 0.0107861 -0.002652133 ;
0.280851812 0.576813459 -0.12176345 -0.204018558 -0.085161025 -0.06979724 0.05308346 0.018626886 0.04444803 0.01127878 0.005690793 -0.010061687 ;
0.307992707 0.559583076 -0.146525668 -0.183971458 -0.069203054 -0.066571937 0.038024149 0.019591027 0.027764095 0.008264851 0.008858816 -0.003814399 ;
0.294363149 0.573035784 -0.137699398 -0.196482326 -0.080671013 -0.065221722 0.04108043 0.020195626 0.041774405 0.008414219 0.007321654 -0.00611705 ;
0.307834206 0.563095068 -0.193512304 -0.145560171 -0.073659491 -0.063326585 0.021529803 0.034017709 0.011916808 0.034417955 -0.00126679 0.004504673 ;
0.304426981 0.563709984 -0.197758228 -0.148931013 -0.071788906 -0.069707014 0.0231296 0.046155948 0.021789552 0.030325855 -0.002320414 0.000959294 ;
0.311788464 0.561049269 -0.133064685 -0.204525451 -0.075169846 -0.066202455 0.040959975 0.022198621 0.039014622 0.00644524 0.004255457 -0.006759533 ;
0.291977643 0.560715244 -0.167329294 -0.169657544 -0.067477083 -0.07933528 0.042063839 0.036436235 0.031502999 0.022581948 0.002389229 -0.003874559 ;
0.319309217 0.546320706 -0.113312712 -0.212488562 -0.057104429 -0.063854596 0.041023354 0.012876812 0.038963752 -0.017092706 0.011006708 -0.005655671 ;
0.312296101 0.555263583 -0.129806153 -0.185975775 -0.064123494 -0.061384166 0.036665646 0.012331425 0.020772799 -0.004667931 0.00907186 -0.000450927 ;
0.279162748 0.5541199 -0.081826615 -0.222366411 -0.062270089 -0.05809503 0.051284618 0.005532712 0.046100946 -0.011171414 0.008370496 -0.008847829 ;
0.30711902 0.551383009 -0.186015831 -0.133831381 -0.060515364 -0.058493608 0.015643052 0.02584202 -0.002056225 0.027121581 0.003318279 0.010477316 ;
0.319205565 0.558097425 -0.194421468 -0.160390786 -0.065160701 -0.079258821 0.031680847 0.046807146 0.014282852 0.030649048 -0.00565814 0.004161115 ;
0.329830744 0.565644088 -0.133256033 -0.218138072 -0.074800666 -0.074631228 0.048909664 0.015280889 0.042528874 -0.008091385 0.015600347 -0.008884836 ;
0.294102106 0.565966727 -0.141022344 -0.177582338 -0.073763297 -0.05626905 0.023420467 0.023210495 0.02770566 0.007428947 0.003609864 0.003186584 ;
0.331818536 0.544895086 -0.198218662 -0.149779993 -0.053893954 -0.067346999 0.02855254 0.025518199 -0.00019206 0.029222932 0.003050246 0.006365188 ;
0.302634497 0.559142183 -0.155702819 -0.173271156 -0.069448941 -0.060984756 0.026999797 0.018793828 0.025986569 0.014540974 0.007856397 0.003443848 ;
0.318897658 0.55905731 -0.128470862 -0.208361066 -0.068103052 -0.05970809 0.038607653 0.010377748 0.038433454 -0.007617923 0.01243924 -0.005559604 ;
0.282300841 0.575826572 -0.11860239 -0.202441369 -0.082034531 -0.064322599 0.043438255 0.013627599 0.047088544 0.000217953 0.012494783 -0.007599277 ;
0.302222379 0.567742815 -0.187542155 -0.155036554 -0.075548457 -0.066751266 0.028281893 0.036631996 0.010594139 0.039163289 -0.007481857 0.007717626 ;
0.297673279 0.554620403 -0.124961936 -0.204142645 -0.063525873 -0.064263854 0.040942595 0.020092594 0.034992597 0.00727097 0.002832893 -0.001536072 ;
0.307395693 0.55003058 -0.134458494 -0.182960837 -0.060211912 -0.061966183 0.036883663 0.010522351 0.022019019 0.001734074 0.011270697 -0.000263217 ;
0.298936502 0.569208853 -0.127581466 -0.204755007 -0.07805428 -0.06386383 0.045698857 0.011758161 0.03901163 0.006555381 0.008526747 -0.005447094 ;
0.256030302 0.556720099 -0.166916486 -0.14690407 -0.064582046 -0.064243308 0.032981645 0.026515375 0.02750922 0.040617771 0.001669829 0.000595041 ;
0.321423968 0.535331771 -0.196443967 -0.141447259 -0.04672281 -0.076738306 0.027476538 0.042549118 0.007548626 0.024233031 0.000771014 0.002008724 ;
0.295109367 0.573976722 -0.16601934 -0.167980441 -0.081333737 -0.064494783 0.034864668 0.023495562 0.024218954 0.024780457 0.002843411 0.000531915 ;
0.299118558 0.55219302 -0.150342484 -0.168803354 -0.062094192 -0.069637539 0.035841061 0.021435152 0.02216617 0.010980131 0.008603857 0.000533288 ;
0.323171445 0.547318407 -0.190390492 -0.155338243 -0.060609447 -0.076734028 0.032716094 0.035325334 0.002932472 0.037856716 -0.00538738 0.009130234 ;
0.298070639 0.55164909 -0.150241193 -0.182712346 -0.061309953 -0.067173437 0.038635037 0.023453664 0.028265906 0.019588016 0.000956344 0.00081069 ;
0.275555755 0.568947641 -0.117670112 -0.190259388 -0.075311717 -0.050219814 0.031976118 0.004913507 0.035082834 0.005410613 0.011751054 -0.000181967 ;
0.313952962 0.560832771 -0.146665598 -0.206834603 -0.068817755 -0.07551288 0.045011919 0.028230546 0.050487144 -0.002791083 0.012879386 -0.010778317 ;
0.284497847 0.569056794 -0.184117004 -0.147109069 -0.076787935 -0.070217404 0.032258039 0.035346002 0.019677366 0.037192788 -0.0012341 0.00142795 ;
0.303937929 0.561267753 -0.133148369 -0.178781025 -0.068559779 -0.052195133 0.021825167 0.014624789 0.022525223 -0.004806903 0.009317714 0.003987599 ;
0.301215809 0.560214164 -0.154037783 -0.167297928 -0.071344412 -0.064651328 0.032389975 0.023945166 0.023648852 0.01191303 0.004108834 -0.000112321 ;
0.280668967 0.538413248 -0.155897806 -0.153233007 -0.049476846 -0.067647465 0.026682234 0.033037325 0.023315952 0.020178526 0.000379254 0.003572369 ;
0.303579915 0.557184815 -0.184752009 -0.131292473 -0.067370569 -0.062517091 0.01559215 0.034151763 -0.000029067 0.026575867 -0.000298681 0.009168611 ;
0.30512901 0.578658155 -0.135637257 -0.199274092 -0.086412654 -0.066250143 0.040422397 0.017646563 0.037407363 0.003180789 0.008150494 -0.00302745 ;
];
X(6,:,:)=[0.308456516 0.548699085 -0.188978063 -0.151401475 -0.05557065 -0.07151002 0.029697358 0.035295551 0.011350417 0.029611753 -0.000172193 0.004511909 ;
0.303781897 0.572784321 -0.175900454 -0.15982919 -0.079770148 -0.062447534 0.031683803 0.021984255 0.018414898 0.022320333 0.00683321 0.000134725 ;
0.313261341 0.556251172 -0.14013791 -0.212952853 -0.067862578 -0.078719935 0.047927774 0.027589061 0.049566641 0.005202673 0.008211293 -0.008349136 ;
0.284908315 0.568808886 -0.131568384 -0.202095468 -0.076652587 -0.061235653 0.04478053 0.013812483 0.045367555 0.013242968 0.006149054 -0.005525492 ;
0.287084687 0.575892201 -0.140922732 -0.198646949 -0.083573006 -0.064195266 0.044711147 0.017367295 0.046159505 0.01549979 0.006369112 -0.00575415 ;
0.281049285 0.546456464 -0.140081671 -0.169099004 -0.056917687 -0.064495243 0.031842614 0.028793156 0.033243438 0.006694227 0.003922365 -0.0014173 ;
0.383983213 0.548002583 -0.184058917 -0.275652385 -0.055645106 -0.103768595 0.073157602 0.033261197 0.069590444 0.017032398 0.010147945 -0.016082914 ;
0.374519138 0.553724906 -0.190707924 -0.25493662 -0.061983979 -0.099767206 0.060571049 0.043637263 0.062121946 0.019263263 0.006255307 -0.012719783 ;
0.355640049 0.543936317 -0.243642438 -0.202911814 -0.052304478 -0.097469392 0.043774927 0.059282718 0.042924694 0.058490116 -0.010574806 0.002811307 ;
0.359162844 0.547757095 -0.211255408 -0.212579729 -0.056999616 -0.096230084 0.053912169 0.041651046 0.041713275 0.034392907 0.000339032 -0.001886479 ;
0.37073123 0.565897482 -0.215098083 -0.229607878 -0.074524486 -0.099571865 0.057529297 0.042465989 0.052048413 0.033339256 0.001823458 -0.005058141 ;
0.400155396 0.549113312 -0.238149121 -0.249824441 -0.063563098 -0.101323625 0.049738291 0.049822996 0.065991272 0.03957486 0.004851617 -0.006410054 ;
0.338221576 0.576300872 -0.188435064 -0.225054272 -0.087096194 -0.084162971 0.053139915 0.032710663 0.06557034 0.022029086 0.008510094 -0.011759612 ;
0.350176366 0.563933031 -0.20363074 -0.230582781 -0.071850125 -0.093315092 0.055982655 0.040994853 0.059798675 0.034395192 0.002484973 -0.008412053 ;
0.555473345 0.37083975 -0.240262683 -0.223004053 -0.097697719 -0.064257521 0.044624972 0.058484884 0.048509062 0.054528699 -0.007336872 0.000070482 ;
0.374892418 0.544474087 -0.256459686 -0.214016897 -0.051435968 -0.101975964 0.046138477 0.060299388 0.041929186 0.062916871 -0.009850469 0.003043985 ;
0.373539707 0.550129301 -0.199687214 -0.239908892 -0.061132904 -0.092641448 0.058865606 0.032099332 0.058361548 0.021800715 0.01064277 -0.012094524 ;
0.365476534 0.543556545 -0.227296181 -0.21830308 -0.052827831 -0.099557678 0.055808394 0.046384472 0.044403476 0.048257135 -0.003494629 -0.002444588 ;
0.375529756 0.544625419 -0.257572321 -0.214453327 -0.051800869 -0.101087428 0.045643802 0.060581287 0.041922208 0.064314221 -0.01057276 0.002827199 ;
0.411438142 0.553999796 -0.227747657 -0.280450597 -0.069643537 -0.108752036 0.064789817 0.052056019 0.088674407 0.027432307 0.00872837 -0.020550431 ;
0.398129002 0.557652407 -0.208170683 -0.276174732 -0.066935544 -0.10756104 0.073927027 0.041315971 0.060877116 0.03761378 0.001159061 -0.011863093 ;
0.336487548 0.549179705 -0.22248214 -0.197190513 -0.057758971 -0.094604488 0.048226009 0.049055308 0.043444006 0.049415616 -0.002144146 -0.001648939 ;
0.337802247 0.564347324 -0.218009438 -0.207178505 -0.074593061 -0.088635877 0.049467306 0.040646739 0.039328062 0.060355439 -0.004740133 0.001194481 ;
0.355938167 0.575604047 -0.211722199 -0.239591565 -0.083117461 -0.09686185 0.057876637 0.047561386 0.06111299 0.043718077 -0.002123816 -0.008430425 ;
0.37477778 0.560157551 -0.213976915 -0.247519687 -0.069665546 -0.098426945 0.055614655 0.04330301 0.064873199 0.03405877 0.004070168 -0.007295272 ;
0.334903972 0.552946636 -0.212306554 -0.1914372 -0.064619539 -0.085960555 0.050583161 0.040093687 0.033374037 0.05042884 -0.00518336 -0.002856815 ;
0.327272099 0.551333354 -0.185449303 -0.224684349 -0.060500063 -0.085737278 0.05303093 0.034436475 0.057150916 0.037599907 0.002888804 -0.007362706 ;
0.348667887 0.549653961 -0.213215023 -0.221129093 -0.058311993 -0.100194115 0.053738556 0.045334916 0.048043265 0.04886101 0.000125173 -0.00160962 ;
0.340675713 0.542173342 -0.167051213 -0.245998032 -0.050804746 -0.091025502 0.059499738 0.034942587 0.05955035 0.023414168 0.003756096 -0.009157437 ;
0.303151042 0.560101131 -0.140777648 -0.203372669 -0.068370781 -0.069807385 0.048251684 0.018807546 0.032208137 0.018505477 0.003736952 -0.002440018 ;
0.305409415 0.574160144 -0.152002982 -0.197408617 -0.079876054 -0.071389919 0.044190719 0.02896688 0.038857323 0.012856645 0.003509259 -0.007282798 ;
0.33629833 0.584954854 -0.186508636 -0.214087632 -0.092964464 -0.08965557 0.058738941 0.038395445 0.045567546 0.028607399 0.000947341 -0.010310975 ;
0.298917412 0.527207473 -0.157706757 -0.17685105 -0.036602563 -0.067412606 0.032019216 0.028431043 0.034558027 0.012087569 0.005821723 -0.000480218 ;
0.297499863 0.543506549 -0.122193058 -0.203849508 -0.050257985 -0.07160026 0.047020521 0.02617755 0.04567158 -0.009484969 0.007574721 -0.010071673 ;
0.283962213 0.537110356 -0.108000866 -0.199877438 -0.045228459 -0.064636766 0.04552588 0.016758938 0.046094482 -0.012408711 0.010864205 -0.010168727 ;
0.296797944 0.567841432 -0.149398819 -0.191120593 -0.076513251 -0.063202009 0.038780812 0.024686343 0.042258255 0.01246435 0.006109127 -0.008713156 ;
0.32174269 0.550792658 -0.202172837 -0.153583005 -0.062116247 -0.079010374 0.032125458 0.045063227 0.015017716 0.033790809 -0.003950211 0.002288772 ;
];
for sort=1:Species_Sum
for i=1:Parameter_Sum
Position=A(i);
Y(sort,:,i)=X(sort,:,Position);
end
end%---------随机产生由四个参数(从6个中取)组成的矩阵
Std=zeros(Species_Sum,Parameter_Sum);
for sort=1:Species_Sum
Std(sort,:)=std(Y(sort,:,:));
end
mean=zeros(Species_Sum,Parameter_Sum);%mean是类内的均值
for sort =1:Species_Sum
for number=1:Sample_Sum %number是样本编号
h(1,:)=1/Sample_Sum*Y(sort,number,:);
mean(sort,:)=mean(sort,:)+h(1,:);
end
end
Mean=zeros(1,Parameter_Sum);
for sort=1:Species_Sum
Mean= Mean+Probability*mean(sort,:);
end
Jd=zeros(Parameter_Sum);Sb=zeros(Parameter_Sum);Sw=zeros(Parameter_Sum);St1=zeros(Parameter_Sum);St2=zeros(Parameter_Sum);
for sort=1:Species_Sum
Sw1=zeros(Parameter_Sum);
for number=1:Sample_Sum
hh(1,:)=Y(sort,number,:);
St1=(hh(1,:)-mean(sort,:))\'*(hh(1,:)-mean(sort,:));
Sw1=Sw1+St1;
end
St2=(mean(sort,:)-Mean)\'*(mean(sort,:)-Mean);
Sb=Sb+Probability*St2;
Sw=Sw+Probability*(1/Sample_Sum)*Sw1;
end
[row,column]=size(Sw);
Tr_Sw=0;Tr_Sb=0;
for i=1:row
for j=1:column
if i==j
Tr_Sw=Tr_Sw+Sw(i,j);
Tr_Sb=Tr_Sb+Sb(i,j);
end
end
end
J1=Tr_Sb/Tr_Sw;
% Jd=Sw+Sb;
% [row,column]=size(Jd);
% Tr=0;
% for i=1:row
% for j=1:column
% if i==j
% Tr=Tr+Jd(i,j);
% end
% end
% end
% J1=Tr
clc;clear;
figure(1);
Parameter_Sum=6;%从Parameter_Sum_All中找出参数个数为Parameter_Sum的最优组合
[J_Yuan,Para_Position,Parameter_Sum_All]=wh_test_44(Parameter_Sum);
Max=J_Yuan;Max_1=Max;Sample_Sum=wh_ZHS(Parameter_Sum_All,Parameter_Sum);
Temperature=1000;Decline=0.8;Step=Sample_Sum;Temp_step=1;
Temperature_Initial=Temperature; Temperature_End=1;Max_1_Max=0;
Temp_step_Point=round((Temperature_Initial-Temperature_End)/10);%将温度起点和终点分为10段,每段的两个端点都是采样点
if (Temp_step_Point<2)
Temp_step_Point=2;
end
while ~(Temperature<Temperature_End)
Temp_step=Temp_step+1;
if (Temp_step==Temp_step_Point)
if (Max_1==Max)
Max_1_Max=1;
break;%如果两个采样点的值相同,那末认为已经找到最优解,退出循环
else
Temp_step=1;%如果不相同,继续降温Temperature=Temperature*Decline;
end
end
for step=1:Step
[J_Xin,P]= wh_test_44(Parameter_Sum);
D=J_Xin-J_Yuan;
if J_Xin>=J_Yuan
Max=J_Xin;
J_Yuan=J_Xin;
Para_Position=P;
if (Temp_step==1)
Max_1=Max;
end%if (step==1)
else
Edge=rand(1);
if exp(D/Temperature)>Edge
Max=J_Yuan;
if (Temp_step==1)
Max_1=Max;
end%if (step==1)
end%---if exp(D/Temperature)>Edge
end%-----if J_Xin>=J_Yuan
end%---Step
Temperature=Temperature*Decline;
end%---while ~(Temperature<1)
figure(1);
title \'Finished\';
% while ~(Temperature<100)
% % for Step=1:500
% step=1;W_step=1;
% while ~and((Max_1==Max),(step==Step))%具有自适应功能,直到在该温度下平衡才结束(直到最大值不再有变化时循环才停止)
% if (step==Step)
% step=1;%两次采样点间的距离,如果两次采样的值相等,我们就认为在该温度下达到平衡
% W_step=W_step+1;%判断该温度下平衡的次数,如果大于W_step_Max,我们就认为在该温度下不能达到平衡,break出去开始降温
% Max_1==Max;
% end%(step==Step)
%
% if (W_step==W_step_Max)
% break;
% end
%
% [J_Xin,P]= wh_test;
% D=J_Xin-J_Yuan;D=D*10^5;
% if J_Xin>=J_Yuan
% Max=J_Xin;
% J_Yuan=J_Xin;
% Para_Position=P;
% else
% Edge=rand(1);
% if exp(D/Temperature)>Edge
% Max=J_Yuan;
% % J_Yuan=J_Yuan;
% % Para_Position=Para_Position;
% end%---if exp(D/Temperature)>Edge
% end%-----if J_Xin>=J_Yuan
% % end%---Step
% step=step+1;
% end% while ~and((Max_1==Max),step==Step)
% Temperature=Temperature*Decline;
% end%---while
clc;clear;
figure(1);
Parameter_Sum=6;%从Parameter_Sum_All中找出参数个数为Parameter_Sum的最优组合
Para_Position=zeros(10,Parameter_Sum);
for kkk=1:1
[J_Yuan,Para_Position(kkk,:),Parameter_Sum_All]=wh_test_44(Parameter_Sum);
Max=J_Yuan;Max_1=Max;Max_2=Max;
Sample_Sum=wh_ZHS(Parameter_Sum_All,Parameter_Sum);% Step=Sample_Sum;
Temperature=100;Temperature_Initial=Temperature; Temperature_End=1;Decline=0.8;
Temp_step=1;Sample_step=1;step=1;
Max_1_Max=0;Max_2_Max=0;
Temp_step_Point=round((Temperature_Initial-Temperature_End)/10);%将温度起点和终点分为10段,每段的两个端点都是采样点
if (Temp_step_Point<2)
Temp_step_Point=2;
end
if (Sample_Sum<=100)
Sample_step_Point=Sample_Sum;%在样本中每两个采样点间的间隔最小为Sample_Sum
Sample_Sum_Step_End=100;
elseif and((Sample_Sum>100),(Sample_Sum<=10000))
Sample_step_Point=round(Sample_Sum/10);
Sample_Sum_Step_End=Sample_Sum*2;
else
Sample_step_Point=1000;
Sample_Sum_Step_End=10000;
% else
% Sample_step_Point=1000;
% Sample_Sum_Step_End=20000;
end
while ~(Temperature<Temperature_End)
Temp_step=Temp_step+1;
if (Temp_step==Temp_step_Point)
if (Max_1==Max)
Max_1_Max=1;%说明在没降到Temperature_End时就已经退出循环了
break;%如果两个采样点的值相同,那末认为已经找到最优解,退出循环
else
Temp_step=1;%如果不相同,继续降温Temperature=Temperature*Decline;
end
end
% for step=1:Step%在每个温度下平衡条件
Max_2_Max=0;
while ~(step>Sample_Sum_Step_End)
Sample_step=Sample_step+1;
if (Sample_step==Sample_step_Point)
if (Max_2==Max)
Max_2_Max=1;%说明在没到(step>Sample_Sum_Step_End)时就已经退出循环了
break;%如果两个采样点的值相同,那末认为已经达到该温度下的平衡,退出while (step>Sample_Sum_Step_End)循环
else
Sample_step=1;%如果不相同,继续采样
end
end
[J_Xin,P]= wh_test_44(Parameter_Sum);
D=J_Xin-J_Yuan;
% D=D*10^5;
if J_Xin>=J_Yuan
Max=J_Xin;
J_Yuan=J_Xin;
Para_Position(kkk,:)=P;
if (Sample_step==1)
Max_2=Max;
end%(Sample_step==1)
if (Temp_step==1)
Max_1=Max;
end%(Temp_step==1)
else
Edge=rand(1);
if exp(D/Temperature)>Edge
Max=J_Yuan;
if (Sample_step==1)
Max_2=Max;
end%(Sample_step==1)
if (Temp_step==1)
Max_1=Max;
end%if (Temp_step==1)
end%---if exp(D/Temperature)>Edge
end%-----if J_Xin>=J_Yuan
step=step+1;
end%while (step>Sample_Sum)
% end%---Step
Temperature=Temperature*Decline;
end%---while ~(Temperature<1)
MAX(kkk)=Max;
end %kkk
Max=max(MAX);
figure(1);
title \'Finished\';
function y=Rand_Tong_yong(End,Sum)%---产生数值为1~End的Sum个互异的数
% Sum=3;
while (1)
for i=1:Sum
A(i)=Wh_rand(End);
end
T=0;
for i=1:Sum
for j=1:Sum
if and((i~=j),A(i)==A(j))
T=1;%代表已经出现重复值
end
end
end
if (T==0)
break;
end
end%-------产生四个介于1~6的随机数,作为随机取样的坐标(就是所谓的邻域)
for i=1:Sum
for j=1:Sum
if A(i)<A(j)
T=A(i);A(i)=A(j);A(j)=T;
end
end
end%将这四个数按升序排序
y=A;
function y=wh_JC(k)
m=1;
for i=1:k
m=m*i;
end
y=m;
function y = Wh_Rand(End)%产生一个1~End的随机数
% disp(nargchk(0,0,nargin))
% disp(nargoutchk(0,5,nargout))
while(1)
T=0;%代表a~=0
a=End*rand(1);a=round(a);
if (a==0)
T=1;
end
if (T==0)
break;
end
end
y=a;
function [y,p,Parameter_Sum_All] = wh_test(Parameter_Sum)%功能:随机从总参数中选取Parameter_Sum个参数(相当于模拟的邻域),并返回将J(x)和对应的组合数(例:1,2,5)
% disp(nargchk(0,0,nargin))
disp(nargoutchk(0,5,nargout))
%)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
% Parameter_Sum=3;%表示从参数总数中选择的参数个数
%)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
X(1,:,:)=[0.358529007 0.470763431 -0.131309931 -0.145074893 -0.064072281 -0.061541157 0.014845917 0.023062398 0.008726998 0.018917906 0.000834543 0.006315644 ;
0.361896224 0.474518892 -0.13576458 -0.145361367 -0.069529894 -0.058290456 0.01060627 0.020365401 0.011349387 0.019479625 0.002739086 0.007990097 ;
0.365855762 0.478135634 -0.140809493 -0.153837682 -0.07516449 -0.063922481 0.018661834 0.025180186 0.017064225 0.021985796 0.002799852 0.004048059 ;
0.267228779 0.544734499 -0.155060147 -0.131730449 -0.06508012 -0.021114895 0.020921947 -0.006398453 0.007855685 0.031399502 0.007593713 -0.000351574 ;
0.251889387 0.521883985 -0.094154287 -0.142894766 -0.059894566 -0.036815447 0.022377783 0.005082287 0.029394932 -0.000933956 0.007022193 -0.002959058 ;
0.310684785 0.516067821 -0.116689539 -0.149023219 -0.059627722 -0.00066641 -0.018115774 -0.007546053 0.024048894 -0.013078086 0.009116263 0.004826709 ;
0.284949136 0.546212778 -0.190536585 -0.104378177 -0.080469471 -0.026421196 0.000861152 0.020535761 0.011366234 0.034521692 0.001753972 0.001602747 ;
0.420853283 0.510890184 -0.193156747 -0.193390725 -0.073916998 -0.026357435 0.003498716 0.009759206 0.017434871 0.019242925 0.002087638 0.003046195 ;
0.422563355 0.526719609 -0.21759055 -0.190825681 -0.101101435 -0.036969543 0.008473727 0.021499734 0.025684718 0.036799589 0.00166145 0.003077889 ;
0.279216362 0.539619357 -0.096232214 -0.164842432 -0.078229659 -0.017031487 0.004917876 -0.001770692 0.032789985 -0.008267266 0.006669014 0.003159271 ;
0.261001642 0.513675191 -0.113464709 -0.100448253 -0.043824864 -0.031391063 -0.000299346 0.002900054 -0.004799753 -0.005694249 0.012554398 0.009788332 ;
0.264003662 0.503204425 -0.064033421 -0.159572656 -0.042742167 -0.037611711 0.027719558 -0.006516778 0.019866148 -0.010877286 0.005715891 0.000842167 ;
0.258427854 0.521714153 -0.065942744 -0.165712845 -0.071904142 -0.04349984 0.015147476 0.007328876 0.037032779 -0.005029466 0.005141786 0.007294385 ;
0.272176738 0.552974263 -0.16021116 -0.133775644 -0.073015881 -0.021214027 0.022266935 -0.006851358 0.007689529 0.033883381 0.007163122 -0.001088225 ;
0.230940372 0.501670621 -0.150764621 -0.061315872 -0.0387379 -0.035670461 0.010520474 0.003518041 -0.012822101 0.03557202 0.006996811 0.010091172 ;
0.255827865 0.514589572 -0.067164668 -0.164585229 -0.041900338 -0.045859572 0.018270189 0.008246547 0.030288176 -0.020228331 0.009003499 0.003510642 ;
0.257561377 0.528180461 -0.083888935 -0.151521837 -0.05844471 -0.032391032 0.004887429 0.014729388 0.032826226 -0.017594468 0.004505102 0.001150188 ;
0.231354345 0.513802027 -0.146851045 -0.060120585 -0.052631544 -0.028088043 0.011433637 -0.00334154 -0.014093675 0.033576715 0.008655868 0.006302654 ;
0.296509841 0.566371656 -0.190775105 -0.115324487 -0.103558271 -0.026362078 0.003846811 0.008414015 0.010404812 0.042678628 0.003526236 0.004263113 ;
0.236425959 0.533334926 -0.105444241 -0.126559488 -0.075963277 -0.053742313 0.015162338 0.019675772 0.026041242 0.013379821 0.00933117 0.008357212 ;
0.256095446 0.529533864 -0.105138125 -0.140455129 -0.060865002 -0.049752114 0.018205469 0.011974571 0.019310699 0.006782826 0.007865503 0.006440348 ;
0.227580149 0.508489698 -0.141946268 -0.073737022 -0.051286363 -0.04166986 0.016388077 0.009482258 -0.003851397 0.036177507 0.007177632 0.007193871 ;
0.4212582 0.495313465 -0.210387383 -0.151932464 -0.067116737 -0.053403237 0.003239178 0.025323725 0.005358247 0.018580172 0.002187946 0.01157532 ;
0.424681902 0.497794398 -0.218241827 -0.148738811 -0.080637633 -0.04979433 0.003038052 0.021958007 0.006054456 0.03042999 0.003148578 0.010302036 ;
0.233049263 0.589506271 -0.149820967 -0.099788822 -0.113221828 -0.019650537 0.006484164 0.002003329 0.010748407 0.032627161 0.007751864 0.000306024 ;
0.241515154 0.516586756 -0.073360381 -0.139164814 -0.057812098 -0.038221519 0.011223822 0.007006906 0.028587727 -0.009433182 0.008211003 0.004860879 ;
0.34159149 0.523781096 -0.169754365 -0.146562519 -0.097005751 -0.056722506 0.010890636 0.028839805 0.018888733 0.030565232 0.002967028 0.012518666 ;
0.353662583 0.502148204 -0.199720391 -0.110789848 -0.098307583 -0.057024997 0.011056696 0.03060834 0.015777556 0.043218678 0.000774658 0.008591562 ;
0.385952153 0.50647538 -0.203149917 -0.142081993 -0.100830968 -0.060624263 0.020250357 0.027987269 0.016984913 0.044533884 -0.002560535 0.007059106 ;
0.264917741 0.528280933 -0.164794567 -0.110007308 -0.061210745 -0.038864799 0.016427129 0.014032792 0.008349254 0.03535851 0.003775395 0.003732411 ;
0.261136807 0.531405309 -0.152767484 -0.10826334 -0.06737426 -0.039342209 0.017624663 0.014765297 0.011589837 0.027976146 0.004823435 -0.001575346 ;
0.402976847 0.525840448 -0.172038762 -0.21584681 -0.122003981 -0.077844438 0.037194054 0.024321155 0.0453987 0.03280175 0.011901868 0.007295727 ;
0.383003835 0.516808062 -0.179493667 -0.17414387 -0.106827811 -0.065008453 0.014267029 0.036143478 0.025418164 0.034079287 0.004699614 0.011050328 ;
0.32626372 0.519363067 -0.175748912 -0.13654473 -0.108683913 -0.056200926 0.01891009 0.034812654 0.022775294 0.047858485 0.002383084 0.004808465 ;
0.398710614 0.499520875 -0.212281482 -0.146599729 -0.087494467 -0.063208545 0.019439084 0.028288014 0.014089739 0.042464942 0.000114132 0.006952573 ;
0.255589701 0.530882769 -0.09409918 -0.131242727 -0.064358367 -0.030902829 0.007024238 0.000466316 0.013553317 -0.006438347 0.012227735 0.007296509 ;
0.26316158 0.55002294 -0.197739337 -0.083494012 -0.082040021 -0.014356586 0.012305435 -0.000674054 0.005740176 0.047071478 0.006829577 -0.006829242 ;
];
X(2,:,:)=[0.220299207 0.523677713 -0.139775969 -0.077978521 -0.077333654 -0.042742213 0.012871537 0.021262043 0.016389666 0.03484591 0.003718512 0.00475959 ;
0.356646402 0.48551956 -0.168238442 -0.124205812 -0.084464096 -0.061589554 0.016844302 0.033276398 0.013541997 0.022727881 0.004088859 0.005849201 ;
0.359142837 0.481796344 -0.17278126 -0.121043477 -0.086205213 -0.054910361 0.009614327 0.029654989 0.012118982 0.028955858 0.004405158 0.009248678 ;
0.293613292 0.557695841 -0.126780937 -0.178610321 -0.129166271 -0.056070961 0.031523365 0.018426917 0.057958724 0.029248 0.003584184 -0.001430155 ;
0.396716592 0.484063257 -0.19333402 -0.143342103 -0.10190544 -0.086363202 0.01708821 0.044276618 0.017323554 0.04477947 0.006364356 0.014321998 ;
0.259360574 0.54128833 -0.088004272 -0.162133692 -0.087267767 -0.053151645 0.033811932 0.007189664 0.037117579 0.004565864 0.00820871 -0.000992267 ;
0.247870535 0.554765487 -0.081059266 -0.162987358 -0.090654208 -0.04220222 0.028181001 0.005401564 0.033989939 0.003089006 0.003620013 -0.000020859 ;
0.234806226 0.510890332 -0.0734097 -0.143464213 -0.074342928 -0.033632146 0.016982626 0.005498198 0.0409283 0.002453918 0.013420364 -0.00013484 ;
0.226362118 0.538245629 -0.086068764 -0.138652263 -0.086672938 -0.037986179 0.01542271 0.010919017 0.038559381 0.003745756 0.011529636 0.004592638 ;
0.253791848 0.547237992 -0.082560312 -0.168162057 -0.092481308 -0.052541685 0.037878562 0.008054836 0.043378478 0.003765369 0.006170483 -0.004538855 ;
0.237248864 0.553690131 -0.106369731 -0.130092143 -0.10490394 -0.039915802 0.013359859 0.016832749 0.037410184 0.012113489 0.008759689 0.001861178 ;
0.244672571 0.55002772 -0.118008479 -0.125762925 -0.099029551 -0.045357496 0.019827342 0.007461076 0.025407647 0.021434371 0.011325673 0.007998088 ;
0.240532381 0.526110259 -0.13088189 -0.115979024 -0.07920585 -0.048151275 0.020654166 0.021394527 0.021910912 0.031118647 0.006176789 0.006314557 ;
0.24610243 0.553613614 -0.117163762 -0.126738573 -0.100696138 -0.04563921 0.019205567 0.007818144 0.025698217 0.01919818 0.011192314 0.00740684 ;
0.22765721 0.553380088 -0.132371512 -0.105235575 -0.092405503 -0.038229567 0.017417704 0.004426926 0.017416893 0.03330266 0.008400093 0.006237735 ;
0.230981948 0.521961589 -0.119120117 -0.108302684 -0.083214478 -0.052384902 0.023250275 0.016186669 0.025388967 0.02989644 0.008344063 0.007003197 ;
0.293192197 0.541217642 -0.141383319 -0.129140507 -0.106363235 -0.052816341 0.008607279 0.024496907 0.029416575 0.01808012 0.007493917 0.007196345 ;
0.229759874 0.538445065 -0.070449203 -0.150820183 -0.086394139 -0.036279564 0.019757462 0.004317825 0.040772354 -0.001697993 0.011981205 0.000605867 ;
0.263697954 0.480346645 -0.082454482 -0.102636013 -0.048900746 -0.051042051 0.01300732 0.005526857 0.016958135 -0.018979674 0.017622296 0.006852829 ;
0.228550387 0.533561053 -0.087785856 -0.136140695 -0.09645237 -0.054000544 0.028457004 0.01628683 0.042266099 0.014463287 0.00782634 0.002966936 ;
0.22804176 0.548135226 -0.106824272 -0.131282526 -0.085398029 -0.05104368 0.019124816 0.016730084 0.037753123 0.010458028 0.010807698 0.003495579 ;
0.337262143 0.527280914 -0.190167739 -0.129427188 -0.11409456 -0.056171231 0.012944712 0.040349525 0.01944097 0.043679354 -0.001311815 0.010208433 ;
0.324785317 0.520733153 -0.176896856 -0.118560195 -0.106909139 -0.051998079 0.010598847 0.03469019 0.012347747 0.037577668 0.000754927 0.012871287 ;
0.235195912 0.510407729 -0.053599001 -0.166286615 -0.049929533 -0.024037205 0.017716201 -0.00905505 0.029432055 -0.006496001 0.011273656 0.005376224 ;
0.339867794 0.492712766 -0.161366438 -0.126698819 -0.086940854 -0.055705478 0.018921614 0.021554135 0.009612185 0.032850408 0.005282212 0.009902238 ;
0.192499405 0.528330832 -0.097986976 -0.096281261 -0.078569105 -0.038583228 0.016236165 0.007619178 0.024895178 0.022102295 0.012423025 0.007311051 ;
0.237146893 0.514605852 -0.027668078 -0.184522219 -0.059804571 -0.029584634 0.018265761 0.002273024 0.044428719 -0.017047397 0.001649603 0.00025367 ;
0.210269421 0.551832204 -0.076625814 -0.133573791 -0.089085001 -0.029013471 0.002451969 0.005236384 0.036011408 0.001507494 0.010619348 0.010368173 ;
0.268411782 0.522439134 -0.147149669 -0.14143116 -0.114503897 -0.035011472 0.019670338 0.024668368 0.045605883 0.04793355 0.004177976 0.005177752 ;
0.258982885 0.520802785 -0.142912781 -0.131570568 -0.104644957 -0.035473773 0.017980706 0.02303984 0.039699984 0.043185485 0.004355623 0.006544584 ;
0.254467412 0.506530652 -0.090896928 -0.125737768 -0.062524199 -0.053644292 0.022496321 0.010928868 0.030472775 -0.007274012 0.014620157 0.000555511 ;
0.263697954 0.480346645 -0.082454482 -0.102636013 -0.048900746 -0.051042051 0.01300732 0.005526857 0.016958135 -0.018979674 0.017622296 0.006852829 ;
0.226787887 0.541310655 -0.092951364 -0.133974937 -0.083609791 -0.044803273 0.012400983 0.012282829 0.038175075 0.006858963 0.011899286 0.005620534 ;
0.216450849 0.479974914 -0.045663973 -0.122545884 -0.043238274 -0.041451644 0.020423856 -0.000263004 0.025073463 -0.005681482 0.012449379 0.00446938 ;
0.25741272 0.514239105 -0.144370774 -0.107201637 -0.08226333 -0.047362522 0.016312805 0.028477613 0.022298603 0.036835283 0.000858129 0.004756667 ;
0.29429447 0.547233039 -0.148428487 -0.14092658 -0.105314978 -0.052935116 0.037384197 0.012694681 0.022637821 0.036272033 -0.000579231 -0.002339783 ;
0.245184396 0.551702171 -0.115780321 -0.14434879 -0.094185846 -0.052498336 0.033119657 0.015037358 0.026110359 0.030862862 0.002149878 0.002642029 ;
];
X(3,:,:)=[0.368518484 0.528918796 -0.20297562 -0.151021625 -0.070111239 -0.006936615 -0.010503049 0.008810201 -0.000623849 0.031041394 -0.003112555 0.00799257 ;
0.310854828 0.57070293 -0.193323808 -0.132558396 -0.102299512 -0.035841499 0.001961847 0.03188895 0.013337372 0.032326412 -0.002856864 0.005803093 ;
0.352106376 0.559715308 -0.204754082 -0.16034211 -0.090108463 0.011286018 -0.012558138 0.002264642 0.013740075 0.031155619 -0.003159297 0.000645987 ;
0.334119705 0.556153898 -0.199056332 -0.133669558 -0.085868708 0.01241385 -0.018226079 0.003438348 0.003651272 0.028691601 -0.004503373 0.002853498 ;
0.346120324 0.55867585 -0.209946307 -0.148285644 -0.093053493 0.006058943 -0.009677948 0.003585442 0.013597231 0.036589118 -0.001860468 -0.001806531 ;
0.34058279 0.558326036 -0.124340445 -0.223625705 -0.0923501 0.010082422 0.003615112 -0.016810016 0.048267359 -0.003239582 0.003076376 -0.003587141 ;
0.345366526 0.576498403 -0.190874867 -0.163552582 -0.119463011 -0.042614435 0.016923581 0.014833378 0.02524371 0.025241955 0.011641245 0.000747894 ;
0.336208695 0.5700809 -0.146653905 -0.201545697 -0.09871492 0.012384556 -0.001920915 -0.011860457 0.039536144 0.003179975 0.003922341 -0.004622997 ;
0.301778231 0.558018438 -0.161600499 -0.163113871 -0.100380857 -0.040071031 0.011210177 0.028452281 0.040653706 0.022739877 0.000218194 0.002089865 ;
0.325672677 0.588470714 -0.172756324 -0.187426322 -0.124867838 -0.066124046 0.04204702 0.015312541 0.034012006 0.035445145 0.009197185 0.001013525 ;
0.274094239 0.563966509 -0.095848222 -0.197408268 -0.099246646 -0.028220701 0.032540207 -0.001053224 0.050722929 0.003909242 0.004481598 -0.007938395 ;
0.293232693 0.569377278 -0.112074942 -0.19261262 -0.106720089 -0.048621778 0.030738546 0.003836797 0.0447508 0.002973468 0.01258777 0.002527353 ;
0.337450432 0.568949716 -0.128578211 -0.222941941 -0.100571497 0.004258399 0.011922723 -0.016861998 0.046204189 0.001384612 0.005153315 -0.006375284 ;
0.319237062 0.582035326 -0.204247769 -0.147859758 -0.10579241 -0.02480489 -0.000355306 0.025887391 0.013706146 0.043932767 -0.007392741 0.00565101 ;
0.22771488 0.560318534 -0.065285403 -0.170238042 -0.083864208 -0.031677294 0.023000716 -0.000491033 0.039312674 -0.006323691 0.006051794 0.001480429 ;
0.315249831 0.571186486 -0.166731749 -0.162932613 -0.097865516 -0.019568438 0.017383621 -0.001611595 0.013537059 0.029117056 0.002718323 -0.000484668 ;
0.28698493 0.573959879 -0.160553033 -0.143707712 -0.104571321 -0.057045898 0.024876301 0.015115568 0.019658907 0.027625538 0.012414806 0.005236953 ;
0.34334273 0.580607221 -0.150757297 -0.214468684 -0.113310491 -0.004368195 0.009816566 -0.007578624 0.0505以上是关于模拟退火算法案例记录(附带详细源码)的主要内容,如果未能解决你的问题,请参考以下文章
机器学习实战应用案例100篇(二十)-模拟退火法从原理到实战应用案例