好看视频Android重构——围绕于播放器的重构实践

Posted 百度Geek说

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了好看视频Android重构——围绕于播放器的重构实践相关的知识,希望对你有一定的参考价值。

导读:作为短视频应用最重要的组件,播放器扮演了至关重要的角色;对于短视频App来说,播放相关的性能直接影响到核心用户体验,围绕播放器做一系列的优化是性价比极高的技术投资。

全文3680字,预计阅读时间12分钟。

一、背景介绍

作为短视频应用最重要的组件,播放器扮演了至关重要的角色;对于短视频App来说,播放相关的性能直接影响到核心用户体验,围绕播放器做一系列的优化是性价比极高的技术投资。经过持续的重构和优化,好看视频android端的视频播放体验基本达到秒开效果,瞬间起播,滑动流畅度也明显提高。我们先来看看重构前后的对比。

重构前:很容易观察视频起播前有明显的停顿,中低端机格外明显。

重构后:几乎感受不到播放切换的停顿感。

本次就和大家分享一下好看视频Android端重构中的想法和心得,主要侧重于架构、性能优化方面。

二、好看视频历史回顾——单播放器

好看视频2016年起源于hao123的图文信息流,历经4年,确立了信息流模式的卡尺播放模式。在2020年的Q3,好看视频开启了沉浸式全屏播放项目,最终推全。

由于历史原因,好看视频一直是单播放器架构:全局一个播放器,飘在所有View的最上层,跟随着左右滑动的ViewPager和上下翻页的RecyclerView(竖划翻页配合使用了PagerSnapHelper)同时移动。

mViewPager.addOnPageChangeListener(new ViewPager.OnPageChangeListener() {
    @Override
    public void onPageScrolled(int position, float positionOffset, int positionOffsetPixels) {
        mVideoView.moveVideoViewByX(positionOffsetPixels);
    }        
}
mRecyclerView.addOnScrollListener(new RecyclerView.OnScrollListener() {
     @Override
     public void onScrolled(RecyclerView recyclerView, int dx, int dy) {
         mVideoView.moveVideoViewByY(dy);
     }
});

老架构的核心特点是,播放器有极高的生命周期和作用域(和当前Activity一致),且低作用域和生命周期的组件又直接持有Context控制和操作播放器。播放器全局单例虽然逻辑上简单,但实现上并不简约,主要存在几个明显问题

1、业务耦合严重,开发效率低
  • 播放器和业务代码耦合严重,多个核心类代码1万+行,维护成本高,对新人极其不友好。播放器在初始化时就有221个View,各个View之间的隐藏和显示逻辑复杂,函数括号嵌套层次非常深,维护成本极高。Feed列表只承载视频封面图,导致广告/直播等第三方业务既要负责holder的展示,又要独立创建高层级的播放器进行控制,代码复杂度极高。

  • 播放器状态控制复杂紊乱,从Activity、Fragment、ViewPager、RecyclerView、RecyclerViewAdapter、RecyclerViewHolder、每个View都能直接控制全局的单例播放器,生命周期难以追踪,播放相关的bug和用户反馈定位十分困难。
2、性能问题尾大不掉
  • 由于播放器是飘在所有View的最上层,导致某些业务的View如果需要在最顶层,只能放在播放器内部再重新实现一遍。RecyclerViewHolder中的某些View,既要在holder中又要在播放器的View中,再加上历史的陈旧代码,线上大量出现播放器View初始化时的ANR和卡顿

播放器本身的复杂度又使得性能的优化难度和风险极大,再加上历史原因,这就导致了老架构feed滑动性能很差,滑动卡顿在中端机上十分明显,和竞品差距巨大,以火焰图为例:

  • Feed列表滑动需要同步播放器进行卡尺滑动(包括播放器复位等),导致启播速度人为劣化。

  • 低级别组件需要持有Activity级别的句柄,非常容易产生内存泄漏。

  • 无法直接获取Activity句柄的业务,大量通过EventBus分发消息和控制逻辑,导致播放控制混乱(EventBus事件混乱和组件生命周期事件冲突等)。EventBus不仅加剧了内存泄漏的风险,还导致一些列的性能问题。

三、好看视频重构项目——多播放器

不破不立

我们最终决定围绕播放器来对现有代码进行重构,将全局单例的播放器下沉到每个holder中,便于业务隔离和灵活调用播放器。在提高架构合理性从而提升团队开发效率的同时,顺带解决部分性能问题:立项之时,仅仅架构优化可能不足以说服众人,但性能的优化带来的基础体验的优化,不容小觑。可能对于客户端来说,往往是带有性能优化的重构,才是完美的重构。

新架构:多播放器实例,每个holder独有播放器,播放器跟随自己的holder滑动;播放器和业务解耦。

新架构的显著特点,就是降低了播放器作用域和生命周期:

  • 在holder内实现播放器状态自洽管理,直播/广告等业务仅在holder就可以实现自身业务(包括播放控制等),减少无用逻辑,降低代码耦合。

  • 通过LifecycleLite分发播放相关事件,降低对EventBus的依赖,降低组件间耦合和内存泄漏风险。

  • 利用自定义PageSnapHelper等组件,集中优化Feed列表启播/预加载等核心播放体验。

”多快好省“,可以说新架构只实现了前三个,但对于客户端来说,刻意”节省内存“不见得是好主意。一个播放器大约占用10M的虚拟内存,大部分情况下App同时存在2-3个播放器实例,以20-30M的”空间“换取”时间“(开发节省的时间+性能提升的时间),看起来就是大赚小亏的买卖。

不论是从火焰图,还是从线上统计的掉帧率和业务卡顿、ANR来看,新架构明显具有更优秀的滑动性能和体验。而且即使目前依然耗时的部分,也比较容易修复和缓解。

重构前后的掉帧率对比:

<table><tbody><tr><td width="106.33333333333333" valign="top"><br></td><td width="193.33333333333334" valign="top" style="word-break: break-all;"><p style="margin-left: 8px;margin-right: 8px;line-height: normal;"><span style="font-size: 15px;letter-spacing: 0.5px;">轻微掉帧次数/10分钟<br></span></p></td><td width="195" valign="top" style="word-break: break-all;"><p style="margin-left: 8px;margin-right: 8px;line-height: normal;"><span style="font-size: 15px;letter-spacing: 0.5px;">严重掉帧次数/10分钟</span></p></td></tr><tr><td width="107.33333333333333" valign="top" style="word-break: break-all;"><p style="margin-left: 8px;margin-right: 8px;line-height: normal;"><span style="font-size: 15px;letter-spacing: 0.5px;">重构前<br></span></p></td><td width="193.33333333333334" valign="top" style="word-break: break-all;"><p style="margin-left: 8px;margin-right: 8px;line-height: normal;"><span style="font-size: 15px;letter-spacing: 0.5px;">350<br></span></p></td><td width="195" valign="top" style="word-break: break-all;"><p style="margin-left: 8px;margin-right: 8px;line-height: normal;"><span style="font-size: 15px;letter-spacing: 0.5px;">77<br></span></p></td></tr><tr><td width="107.33333333333333" valign="top" style="word-break: break-all;"><p style="margin-left: 8px;margin-right: 8px;line-height: normal;"><span style="font-size: 15px;letter-spacing: 0.5px;">重构后<br></span></p></td><td width="193.33333333333334" valign="top" style="word-break: break-all;"><p style="margin-left: 8px;margin-right: 8px;line-height: normal;"><span style="font-size: 15px;letter-spacing: 0.5px;">150<br></span></p></td><td width="195" valign="top" style="word-break: break-all;"><p style="margin-left: 8px;margin-right: 8px;line-height: normal;"><span style="font-size: 15px;letter-spacing: 0.5px;">18</span></p></td></tr></tbody></table>

关于起播时间的优化

视频起播时间,对于短视频App来说至关重要,如果用户要等待很久的缓冲才能看到视频开始播放,离开App的概率就会增加。在老架构下,单播放器实例会让针对起播时间的专项优化难以实现,而新架构则为此优化提供了架构层面的支持。

1、关于播放器创建的时机

根据RecyclerView的机制,当前视频在播放时,下一个视频的holder会提前调用onBindViewHolder准备页面和数据,所以可以在RecyclerViewHolderonBind时就初始化下一个待播放视频的播放器。

@Override
public void onBindViewHolder(@NonNull RecyclerView.ViewHolder holder, int position) {
    if (holder instanceof ImmersiveBaseHolder) {
        ((ImmersiveBaseHolder) holder).onBind(getData(position), position);
        holder.createPlayer();
    }
}
2、关于播放器开始播放(start)的时机

一般情况下,我们会在RecyclerViewonScrollStateChanged中判断列表滑动的状态,当RecyclerView滑动停止时再起播,并结束上一个视频的播放。

mRecyclerView.addOnScrollListener(new RecyclerView.OnScrollListener() {
    @Override
    public void onScrollStateChanged(RecyclerView recyclerView, int newState) {
           if (newState == SCROLL_STATE_SETTLING) {
               currentHolder.player.prepareAysnc();
             lastHolder.player.stopAndRelease();
           }
    }
});

这种方式固然可行,但我们能不能把播放器播放的时机再提前呢?

当我们将手指放在屏幕时,View随着手指滑动而上下滑动;当我们松开手指时,PagerSnapHelper会计算要跳转的视频,并根据速度和剩余的滑动距离计算时间,通过SmoothScroller做惯性滚动动画——我们考虑下,如果在松开手指的一刻,换句话说,当我们明确知道了下一个待播放的视频时,就赶紧播放它,会有什么效果?

几乎秒播

从播放器调用prepareAsync到首帧渲染(onInfoMEDIA_INFO_VIDEO_RENDERING_START回调),大概需要300-500ms,而从手指开屏幕到滑动结束,也接近200-300ms。一般来说,起播速度在200ms左右用户几乎可以认为是”秒开“,所以提前起播对用户体验的提升巨大。

// PagerSnapHelper.java
@Override
protected LinearSmoothScroller createSnapScroller(RecyclerView.LayoutManager layoutManager) {
    return new LinearSmoothScroller(mRecyclerView.getContext()) {
         @Override
         protected void onTargetFound(View targetView, RecyclerView.State state, Action action) {
             int nextPosition = state.getTargetScrollPosition();
             adapter.getHolder(nextPosition).player.start();
             adapter.getHolder(currentPosition).player.stopAndRelease();
         }   
    }
}
// 重点在 onTargetFound 此时已经成功定位被选择的holder

甚至在性能一般的机器上,可以考虑更深层次的优化,在onBindViewHolder中创建播放器后,立即prepare播放器,但不调用start。此类优化需要对播放器的生命周期掌握极其熟练,处理不当很容易导致多个视频同时播放或者其他的隐藏bug,需要格外小心。

3、更早的起播

有同学可能会问,为什么不在holder刚出现在屏幕中的时候就起播呢?比如说在holder的attachToWindow

这样会导致一个问题,由于起播过早,当屏幕停下来之后,视频已经播放了1-2s,对用户来说体验会很奇怪,永远看不到完整的短视频,体验非但没有变好,反而更差。

但这个思路并不是毫无用处,他适用于一种特殊格式的视频流:对于feed中出现有直播流的情况。提前起播直播流(假设是flv或者rtmp),但不播放直播的声音,等到滑动结束后再开始播放直播的声音,效果就很赞。直播的特点在于,用户不需要从第一帧看起,而且直播的起播往往比短视频要慢,提前起播对于直播来说是十分完美的解决方案,这个思路也是很多App的实现方式。

关于新架构的整体收益

从开发效率上来说,普遍的主观反映,提高了最少20%的开发效率,代码更加好找,”历史包袱“也少了很多。

从技术指标上来看,用户感知的起播时间大幅提高了150ms,网络不差的情况下基本能做到视频秒开;而且后续的优化也更简单,我们也在持续不断的优化每个细节。

从业务指标上看,留存率,人均播放视频数,使用时⻓等指标均有不同程度的上涨,商业化收益也有所上涨,业务收益十分明显。

四、浅谈播放器预加载

所谓”预加载“,指的是提前下载好一定长度的视频,当要播放该视频的时候,播放器只需要下载一小部分,甚至可以直接立即起播。

1、关于预加载的文件大小问题

加载太少,完全失去了秒开的效果;加载太多,对带宽来说又是一种浪费(当然,如果用户十分活跃,滑动意愿强,可以预加载好完整的下一个视频),一般来说,300K-500K是一个常见的选择。

$pip install qtfaststart
$qtfaststart -l 曾经的你.mp4

ftyp (32 bytes)
moov (6891 bytes)
free (8 bytes)
mdat (3244183 bytes)

对于普通长度的短视频来说,300K可以包含几帧的数据,如上图所示,文件头占了不到100K,我们再看看帧的情况。

$ffprobe 曾经的你.mp4 -show_frames | grep -E \'pict_type|coded_picture_number|pkt_size\'

pkt_size=28604
pict_type=I
coded_picture_number=0
pkt_size=145
pkt_size=479
pkt_size=568
pict_type=B
coded_picture_number=3
pkt_size=476
pkt_size=531
pkt_size=1224
pict_type=B
coded_picture_number=2
pkt_size=703

视频的第一帧是关键帧I帧,大约占了30K,B和P帧体积相对较小,所以不难估计300K可以渲染不少帧数,基本满足我们的需求;如果视频较长或者码率较大,预加载长度应当适度增加,最佳方案是后端转码端提前计算好数据,端上根据这个建议值来加载对应的大小。

大多数播放器为了播放流畅度和音视频同步的需要,本地都会有一个缓冲buffer,有的逻辑是按照帧数设置,比如说20帧,也有的是根据时间来设置,比如1-2秒,并不一定300K就一定能起播,需要本地测试具体数值,必要时需要修改播放器内核的配置。大部分情况下,好看的视频在300K时,自研的播放器能够顺利起播。

2、关于预加载的时机问题

预加载时机如果太晚,几乎没有效果;如果太早,可能会跟当前正在播放的视频抢夺宝贵的带宽资源,可能会导致起播速度收益递减,甚至造成严重的卡顿。想象一下,如果我们快速滑动ABC三个视频,此时AB视频正在预加载,正在播放的C视频,C下面的D也在预加载,C的起播时间不但不会降低,反而还会提升!

我们必须要遵守一个原则:视频预加载绝对不能影响到当前视频的播放。一个简单的方案就是,当前视频缓冲到一定比例,再进行下个视频的预加载。当然还有更加细致的方案,比如说动态计算当前已缓冲的进度(onBufferingUpdate回调)和播放进度(getCurrentPosition),如果当前已经缓冲好的时间足够支撑到后续播放,就可以提前开启下个视频的预加载;当前视频如果已经完播(onComplete回调),则可以放心大胆的对下个视频加载更多长度。

另外,在视频被滑走之后,播放器和预加载应当立即停止,释放无用带宽;否则,在网络抖动的情况下,预加载的竞争会显著加剧卡顿。

好看视频新架构逐渐放量之后,播放卡顿率提高不少。我们经过紧急排查,将怀疑的对象放到了视频预加载策略上。重新梳理确定了预加载的细节后,卡顿率下降到之前水平,且用户感知起播时间也没有蜕化,收效很大。

3、关于预加载库AndroidVideoCache

https://github.com/danikula/AndroidVideoCache

这个库近些年不再更新,bug很多,issue也不少,不适于在生产环境,但不失为学习预加载库设计和实现的好资源,该库的设计验证了一个计算机界的箴言:

VideoCache作为播放器和远端资源(CDN)的中间层,一方面从远端缓存视频到本地,一方面本机又开启了一个server,响应来自播放器的请求。

但这个库原本并不支持预加载固定数的字节,只支持全部下载,我们可以先简单的实现一下部分预加载的功能。

 // in HttpProxyCacheServer.java
static final int PRELOAD_CACHE_SIZE = 300 * 1024;

public void preload(Context context, String url, int preloadSize) {
    socketProcessor.submit(new PreloadProcessorRunnable(url, preloadSize));
}

private final class PreloadProcessorRunnable implements Runnable {
    private final String url;
    private int preloadSize = PRELOAD_CACHE_SIZE;
    public PreloadProcessorRunnable(String url, int preloadSize) {
      this.url = url;
      this.preloadSize = preloadSize;
    }
    @Override
    public void run() {
      processPreload(url, preloadSize);
    }
}
private void processPreload(String url, int preloadSize) {
    try {
      HttpProxyCacheServerClients clients = getClients(url);
      clients.processPreload(preloadSize);
      clientsMap.remove(url);
    } catch (ProxyCacheException | IOException e) {
      e.printStackTrace();
    }
}
public void stopPreload(String url) {
    try {
      HttpProxyCacheServerClients clients = getClientsWithoutNew(url);
      if(clients != null) {
        clients.shutdown();
      }
    } catch (ProxyCacheException e) {
      e.printStackTrace();
    } catch (Exception e) {
      e.printStackTrace();
    }
}

// HttpProxyCacheServerClients.java
public void processPreload(int preloadSize) throws ProxyCacheException, IOException {
    startProcessRequest();
    try {
      clientsCount.incrementAndGet();
      proxyCache.processPreload(preloadSize);
    } finally {
      finishProcessRequest();
      ProxyLogUtil.d(TAG, "processPreload finishProcessRequest");
    }
}

// HttpProxyCache.java
public void processPreload(int preloadSize) throws IOException, ProxyCacheException {
    long cacheAvailable = cache.available();
    if (cacheAvailable < preloadSize) {
      byte[] buffer = new byte[DEFAULT_BUFFER_SIZE];
      int readBytes;
      long offset = cacheAvailable;
      while ((readBytes = read(buffer, offset, buffer.length)) != -1) {
        offset += readBytes;
        if (offset > preloadSize) break;
      }
      ProxyLogUtil.d(TAG, "preloaded url = " + source.getUrl() + ", offset = " + offset + ", preloadSize = " + preloadSize);
    }
}
// 仅供学习使用,不适用生产环境

这样一来,我们就有了比较基础的预加载(preload)和取消预加载(stopPreload)功能, 本身这个库的实现并不复杂,有时间和人力完全可以自己开发一套适合自己业务的基础库。

最近“端智能”概念很火,相比于预估点击率(ctr)等尝试增强推荐效果的各种想法,基于播放器的预加载的策略调优,可能是端智能最容易落地的方向。反证来看,前者如果有收益,那完全可以移植到推荐和算法端。后者理论上可以做到真正的“多快好省”:在显著提高用户感知的起播速度基础上,保证不退化卡顿,还不会因为预加载增加太多的带宽资源。

五、浅谈播放器卡顿

对于播放场景较多的App来说,在ANR和卡顿数据里,播放器必定占据一席之地。以ijkplayer为例,release函数耗时明显,甚至通过抓trace都能看到。

播放器的创建和销毁都是耗时的操作,很容易将主线程阻塞住,导致App卡顿甚至ANR。最直观的解决方案就是将release函数放到子线程执行,效果立竿见影;但如果是日活百万以上的应用,会新增不少SIGABRT等native错误,crash率提高很多。原因也很简单,同一个播放器,主线程和子线程同时操作player必然存在线程冲突问题;某个线程已经release了播放器,另外的线程还在不断调用播放器的接口。

1 long ijkmp_get_duration(IjkMediaPlayer *mp)
2 {
3     assert(mp);
4     pthread_mutex_lock(&mp->mutex);
5     long retval = ijkmp_get_duration_l(mp);
6     pthread_mutex_unlock(&mp->mutex);
7     return retval;
8 }

通过addr2line或者ndk-stack定位到有大量崩溃发生在第5行,mp为空指针导致crash。这个不难猜测,既然App没有crash在第3行的assert语句而崩溃在了后面,说明必定发生了在这把锁控制之外的线程问题。一个简单的解决方案是再次加入判空处理,但此方案依然不能完全杜绝crash。

static long ijkmp_get_duration_l(IjkMediaPlayer *mp)
{
    if (mp == NULL) {
        return 0;
    }
    return ffp_get_duration_l(mp->ffplayer);
}
// NOTICE: 此方案仍存在线程冲突问题

想要完全解决,一个更优雅的方案是:

1、将同一个播放器的所有操作,包括创建和销毁等都放在同一个子线程,建议放在一个HandlerThread中;

2、业务侧单独增加变量isPlayerReleased,在播放器销毁之前将此变量置为true,后面对播放器的所有操作都要直接忽略;

需要注意的是,除了业务侧主动调用播放器之外,ijkplayer本身也有一个线程在操作内核,播放器本身会周期性的主动回调给业务。

// in https://github.com/bilibili/ijkplayer/blob/master/android/ijkplayer/ijkplayer-java/src/main/java/tv/danmaku/ijk/media/player/IjkMediaPlayer.java

private static class EventHandler extends Handler {
        @Override
        public void handleMessage(Message msg) {
            switch (msg.what) {
            case MEDIA_PREPARED:
                player.notifyOnPrepared();
                return;

            case MEDIA_PLAYBACK_COMPLETE:
                player.stayAwake(false);
                player.notifyOnCompletion();
                return;

            case MEDIA_BUFFERING_UPDATE:
                long bufferPosition = msg.arg1;
                if (bufferPosition < 0) {
                    bufferPosition = 0;
                }
                ...

此处也需要加入isPlayerReleased控制,在重新编译播放器内核之后,线上跟播放器相关的crash几乎消失

六、架构、性能优化的意义

大规模的性能优化,能显著提高应用的用户体验,进一步会提高业务的核心指标,尤其对于用户增长和商业变现更有裨益。单纯的技术性指标,比如冷启动速度和滑动流畅度,并不能让所有人信服,但如果我们能将之转化为业务指标的增益,认可度就会大大提高。比如说,启动速度的优化往往会带来留存率的提升,流畅度的优化可能会提高消费类指标;既然技术服务于业务,那技术很可能也能够通过数据来证明自己的收益。如果我们负责的是电商App,可能会提高订单转化率千分之一;如果我们负责的是信息流资讯App,可能会提高人均观看视频个数、图文feed阅读量、使用时长,甚至还有可能因为展现和消费以及使用时长上涨,直接提高商业化收入。

所以我们不妨先把技术放在一旁,先把自己当做产品经理,以普通的业务迭代需求来替代技术优化来思考。我们精心设计AB实验,在代码中主动加入AB实验开关,盯紧AB实验后台,随时查看用户反馈,带着业务数据汇报收益。师出有名,我们就算不能证明用户体验明显变好,起码也能证明没有变得更差。一旦我们让技术优化的收益深入人心,即使是小型的优化也立即有了存在的正当理由。

当然,并不是所有的优化都适合AB实验,如果业务迭代十分频繁,优化又不能在短时间内完成,等待我们的将是无穷和无情的代码冲突。”大胆假设,小心求证“,只要有了合适机会,我们就应该设计AB实验并时刻盯紧AB实验大盘看数据,无论是对业务RD还是性能RD,或者架构RD。

推荐阅读

浅谈百度阅读/文库NA端排版技术

云原生架构下的持续交付实践

一年数十万次实验背后的架构与数据科学

|百度短视频推荐系统的目标设计

---------- END ----------

百度Geek说

百度官方技术公众号上线啦!

技术干货 · 行业资讯 · 线上沙龙 · 行业大会

招聘信息 · 内推信息 · 技术书籍 · 百度周边

欢迎各位同学关注

以上是关于好看视频Android重构——围绕于播放器的重构实践的主要内容,如果未能解决你的问题,请参考以下文章

Android简易音乐重构MVVM Java版-解决播放界面旋转动画卡顿及播放异常崩溃问题(二十一)

Android简易音乐重构MVVM Java版-解决播放界面旋转动画卡顿及播放异常崩溃问题(二十一)

Android简易音乐重构MVVM Java版-新增歌曲播放界面+状态栏黑科技(十七)

Android简易音乐重构MVVM Java版-新增歌曲播放界面+状态栏黑科技(十七)

9.20-9.30博客精彩回顾

项目重构方案设计