2万字阐述-Python 用 XGBoost 进行梯度提升的数据准备(收藏)

Posted PythonEducation

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2万字阐述-Python 用 XGBoost 进行梯度提升的数据准备(收藏)相关的知识,希望对你有一定的参考价值。

XGBoost 是一种流行的梯度提升实现,因为它的速度和性能。

在内部,XGBoost 模型将所有问题表示为仅将数值作为输入的回归预测建模问题。如果您的数据采用不同的形式,则必须将其准备为预期的格式。

今天讲解如何使用 Python 中的 XGBoost 库准备用于梯度提升的数据。

看完这篇文章你们会学习:

  • 如何编码字符串输出变量以进行分类。

  • 如何使用一种热编码准备分类输入变量。

  • 如何使用 XGBoost 自动处理缺失数据。

     

\'2万字阐述-Python

标签编码字符串类值

鸢尾花分类问题是具有字符串类值的问题的一个示例。

这是一个预测问题,其中给定鸢尾花的厘米测量值,任务是预测给定的花属于哪个物种。

下载数据集并将其放置在您当前的工作目录中,文件名为“ iris.csv ”。

  • 鸢尾花数据集

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
5.1,3.5,1.4,0.2,Iris-setosa4.9,3.0,1.4,0.2,Iris-setosa4.7,3.2,1.3,0.2,Iris-setosa4.6,3.1,1.5,0.2,Iris-setosa5.0,3.6,1.4,0.2,Iris-setosa5.4,3.9,1.7,0.4,Iris-setosa4.6,3.4,1.4,0.3,Iris-setosa5.0,3.4,1.5,0.2,Iris-setosa4.4,2.9,1.4,0.2,Iris-setosa4.9,3.1,1.5,0.1,Iris-setosa5.4,3.7,1.5,0.2,Iris-setosa4.8,3.4,1.6,0.2,Iris-setosa4.8,3.0,1.4,0.1,Iris-setosa4.3,3.0,1.1,0.1,Iris-setosa5.8,4.0,1.2,0.2,Iris-setosa5.7,4.4,1.5,0.4,Iris-setosa5.4,3.9,1.3,0.4,Iris-setosa5.1,3.5,1.4,0.3,Iris-setosa5.7,3.8,1.7,0.3,Iris-setosa5.1,3.8,1.5,0.3,Iris-setosa5.4,3.4,1.7,0.2,Iris-setosa5.1,3.7,1.5,0.4,Iris-setosa4.6,3.6,1.0,0.2,Iris-setosa5.1,3.3,1.7,0.5,Iris-setosa4.8,3.4,1.9,0.2,Iris-setosa5.0,3.0,1.6,0.2,Iris-setosa5.0,3.4,1.6,0.4,Iris-setosa5.2,3.5,1.5,0.2,Iris-setosa5.2,3.4,1.4,0.2,Iris-setosa4.7,3.2,1.6,0.2,Iris-setosa4.8,3.1,1.6,0.2,Iris-setosa5.4,3.4,1.5,0.4,Iris-setosa5.2,4.1,1.5,0.1,Iris-setosa5.5,4.2,1.4,0.2,Iris-setosa4.9,3.1,1.5,0.1,Iris-setosa5.0,3.2,1.2,0.2,Iris-setosa5.5,3.5,1.3,0.2,Iris-setosa4.9,3.1,1.5,0.1,Iris-setosa4.4,3.0,1.3,0.2,Iris-setosa5.1,3.4,1.5,0.2,Iris-setosa5.0,3.5,1.3,0.3,Iris-setosa4.5,2.3,1.3,0.3,Iris-setosa4.4,3.2,1.3,0.2,Iris-setosa5.0,3.5,1.6,0.6,Iris-setosa5.1,3.8,1.9,0.4,Iris-setosa4.8,3.0,1.4,0.3,Iris-setosa5.1,3.8,1.6,0.2,Iris-setosa4.6,3.2,1.4,0.2,Iris-setosa5.3,3.7,1.5,0.2,Iris-setosa5.0,3.3,1.4,0.2,Iris-setosa7.0,3.2,4.7,1.4,Iris-versicolor6.4,3.2,4.5,1.5,Iris-versicolor6.9,3.1,4.9,1.5,Iris-versicolor5.5,2.3,4.0,1.3,Iris-versicolor6.5,2.8,4.6,1.5,Iris-versicolor5.7,2.8,4.5,1.3,Iris-versicolor6.3,3.3,4.7,1.6,Iris-versicolor4.9,2.4,3.3,1.0,Iris-versicolor6.6,2.9,4.6,1.3,Iris-versicolor5.2,2.7,3.9,1.4,Iris-versicolor5.0,2.0,3.5,1.0,Iris-versicolor5.9,3.0,4.2,1.5,Iris-versicolor6.0,2.2,4.0,1.0,Iris-versicolor6.1,2.9,4.7,1.4,Iris-versicolor5.6,2.9,3.6,1.3,Iris-versicolor6.7,3.1,4.4,1.4,Iris-versicolor5.6,3.0,4.5,1.5,Iris-versicolor5.8,2.7,4.1,1.0,Iris-versicolor6.2,2.2,4.5,1.5,Iris-versicolor5.6,2.5,3.9,1.1,Iris-versicolor5.9,3.2,4.8,1.8,Iris-versicolor6.1,2.8,4.0,1.3,Iris-versicolor6.3,2.5,4.9,1.5,Iris-versicolor6.1,2.8,4.7,1.2,Iris-versicolor6.4,2.9,4.3,1.3,Iris-versicolor6.6,3.0,4.4,1.4,Iris-versicolor6.8,2.8,4.8,1.4,Iris-versicolor6.7,3.0,5.0,1.7,Iris-versicolor6如何调用xgboost python

python模块安装(xgboost)

Python Xgboost GridSearchCV 被杀,如何修复?

Python 中用 XGBoost 和 scikit-learn 进行随机梯度增强

XGBOOST算法Python实现(保姆级)

ImportError:没有名为 xgboost 的模块