Spark内存管理详解(下)——内存管理
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark内存管理详解(下)——内存管理相关的知识,希望对你有一定的参考价值。
参考技术A弹性分布式数据集(RDD)作为Spark最根本的数据抽象,是只读的分区记录(Partition)的集合,只能基于在稳定物理存储中的数据集上创建,或者在其他已有的RDD上执行转换(Transformation)操作产生一个新的RDD。转换后的RDD与原始的RDD之间产生的依赖关系,构成了血统(Lineage)。凭借血统,Spark保证了每一个RDD都可以被重新恢复。但RDD的所有转换都是惰性的,即只有当一个返回结果给Driver的行动(Action)发生时,Spark才会创建任务读取RDD,然后真正触发转换的执行。
Task在启动之初读取一个分区时,会先判断这个分区是否已经被持久化,如果没有则需要检查Checkpoint或按照血统重新计算。所以如果一个RDD上要执行多次行动,可以在第一次行动中使用persist或cache方法,在内存或磁盘中持久化或缓存这个RDD,从而在后面的行动时提升计算速度。事实上,cache方法是使用默认的MEMORY_ONLY的存储级别将RDD持久化到内存,故缓存是一种特殊的持久化。 堆内和堆外存储内存的设计,便可以对缓存RDD时使用的内存做统一的规划和管理 (存储内存的其他应用场景,如缓存broadcast数据,暂时不在本文的讨论范围之内)。
RDD的持久化由Spark的Storage模块 [1] 负责,实现了RDD与物理存储的解耦合。Storage模块负责管理Spark在计算过程中产生的数据,将那些在内存或磁盘、在本地或远程存取数据的功能封装了起来。在具体实现时Driver端和Executor端的Storage模块构成了主从式的架构,即Driver端的BlockManager为Master,Executor端的BlockManager为Slave。Storage模块在逻辑上以Block为基本存储单位,RDD的每个Partition经过处理后唯一对应一个Block(BlockId的格式为 rdd_RDD-ID_PARTITION-ID )。Master负责整个Spark应用程序的Block的元数据信息的管理和维护,而Slave需要将Block的更新等状态上报到Master,同时接收Master的命令,例如新增或删除一个RDD。
在对RDD持久化时,Spark规定了MEMORY_ONLY、MEMORY_AND_DISK等7种不同的 存储级别 ,而存储级别是以下5个变量的组合 [2] :
通过对数据结构的分析,可以看出存储级别从三个维度定义了RDD的Partition(同时也就是Block)的存储方式:
RDD在缓存到存储内存之前,Partition中的数据一般以迭代器( Iterator )的数据结构来访问,这是Scala语言中一种遍历数据集合的方法。通过Iterator可以获取分区中每一条序列化或者非序列化的数据项(Record),这些Record的对象实例在逻辑上占用了JVM堆内内存的other部分的空间,同一Partition的不同Record的空间并不连续。
RDD在缓存到存储内存之后,Partition被转换成Block,Record在堆内或堆外存储内存中占用一块连续的空间。 将Partition由不连续的存储空间转换为连续存储空间的过程,Spark称之为“展开”(Unroll) 。Block有序列化和非序列化两种存储格式,具体以哪种方式取决于该RDD的存储级别。非序列化的Block以一种DeserializedMemoryEntry的数据结构定义,用一个数组存储所有的Java对象,序列化的Block则以SerializedMemoryEntry的数据结构定义,用字节缓冲区(ByteBuffer)来存储二进制数据。每个Executor的Storage模块用一个链式Map结构(LinkedHashMap)来管理堆内和堆外存储内存中所有的Block对象的实例 [6] ,对这个LinkedHashMap新增和删除间接记录了内存的申请和释放。
因为不能保证存储空间可以一次容纳Iterator中的所有数据,当前的计算任务在Unroll时要向MemoryManager申请足够的Unroll空间来临时占位,空间不足则Unroll失败,空间足够时可以继续进行。对于序列化的Partition,其所需的Unroll空间可以直接累加计算,一次申请。而非序列化的Partition则要在遍历Record的过程中依次申请,即每读取一条Record,采样估算其所需的Unroll空间并进行申请,空间不足时可以中断,释放已占用的Unroll空间。如果最终Unroll成功,当前Partition所占用的Unroll空间被转换为正常的缓存RDD的存储空间,如下图2所示。
在 《Spark内存管理详解(上)——内存分配》 的图3和图5中可以看到,在静态内存管理时,Spark在存储内存中专门划分了一块Unroll空间,其大小是固定的,统一内存管理时则没有对Unroll空间进行特别区分,当存储空间不足是会根据动态占用机制进行处理。
由于同一个Executor的所有的计算任务共享有限的存储内存空间,当有新的Block需要缓存但是剩余空间不足且无法动态占用时,就要对LinkedHashMap中的旧Block进行淘汰(Eviction),而被淘汰的Block如果其存储级别中同时包含存储到磁盘的要求,则要对其进行落盘(Drop),否则直接删除该Block。
存储内存的淘汰规则为:
落盘的流程则比较简单,如果其存储级别符合 _useDisk 为true的条件,再根据其 _deserialized 判断是否是非序列化的形式,若是则对其进行序列化,最后将数据存储到磁盘,在Storage模块中更新其信息。
Executor内运行的任务同样共享执行内存,Spark用一个HashMap结构保存了任务到内存耗费的映射。每个任务可占用的执行内存大小的范围为 1/2N ~ 1/N ,其中N为当前Executor内正在运行的任务的个数。每个任务在启动之时,要向MemoryManager请求申请最少为1/2N的执行内存,如果不能被满足要求则该任务被阻塞,直到有其他任务释放了足够的执行内存,该任务才可以被唤醒。
执行内存主要用来存储任务在执行Shuffle时占用的内存,Shuffle是按照一定规则对RDD数据重新分区的过程,我们来看Shuffle的Write和Read两阶段对执行内存的使用:
在ExternalSorter和Aggregator中,Spark会使用一种叫AppendOnlyMap的哈希表在堆内执行内存中存储数据,但在Shuffle过程中所有数据并不能都保存到该哈希表中,当这个哈希表占用的内存会进行周期性地采样估算,当其大到一定程度,无法再从MemoryManager申请到新的执行内存时,Spark就会将其全部内容存储到磁盘文件中,这个过程被称为溢存(Spill),溢存到磁盘的文件最后会被归并(Merge)。
Shuffle Write阶段中用到的Tungsten是Databricks公司提出的对Spark优化内存和CPU使用的计划 [4] ,解决了一些JVM在性能上的限制和弊端。Spark会根据Shuffle的情况来自动选择是否采用Tungsten排序。Tungsten采用的页式内存管理机制建立在MemoryManager之上,即Tungsten对执行内存的使用进行了一步的抽象,这样在Shuffle过程中无需关心数据具体存储在堆内还是堆外。每个内存页用一个MemoryBlock来定义,并用 Object obj 和 long offset 这两个变量统一标识一个内存页在系统内存中的地址。堆内的MemoryBlock是以long型数组的形式分配的内存,其 obj 的值为是这个数组的对象引用, offset 是long型数组的在JVM中的初始偏移地址,两者配合使用可以定位这个数组在堆内的绝对地址;堆外的MemoryBlock是直接申请到的内存块,其 obj 为null, offset 是这个内存块在系统内存中的64位绝对地址。Spark用MemoryBlock巧妙地将堆内和堆外内存页统一抽象封装,并用页表(pageTable)管理每个Task申请到的内存页。
Tungsten页式管理下的所有内存用64位的逻辑地址表示,由页号和页内偏移量组成:
有了统一的寻址方式,Spark可以用64位逻辑地址的指针定位到堆内或堆外的内存,整个Shuffle Write排序的过程只需要对指针进行排序,并且无需反序列化,整个过程非常高效,对于内存访问效率和CPU使用效率带来了明显的提升 [5] 。
Spark的存储内存和执行内存有着截然不同的管理方式:对于存储内存来说,Spark用一个LinkedHashMap来集中管理所有的Block,Block由需要缓存的RDD的Partition转化而成;而对于执行内存,Spark用AppendOnlyMap来存储Shuffle过程中的数据,在Tungsten排序中甚至抽象成为页式内存管理,开辟了全新的JVM内存管理机制。
Spark的内存管理是一套复杂的机制,且Spark的版本更新比较快,笔者水平有限,难免有叙述不清、错误的地方,若读者有好的建议和更深的理解,还望不吝赐教。
以上是关于Spark内存管理详解(下)——内存管理的主要内容,如果未能解决你的问题,请参考以下文章