从源码分析Hystrix工作机制

Posted vivo互联网

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了从源码分析Hystrix工作机制相关的知识,希望对你有一定的参考价值。

一、Hystrix解决了什么问题?

在复杂的分布式应用中有着许多的依赖,各个依赖都有难免在某个时刻失败,如果应用不隔离各个依赖,降低外部的风险,那容易拖垮整个应用。

举个电商场景中常见的例子,比如订单服务调用了库存服务、商品服务、积分服务、支付服务,系统均正常情况下,订单模块正常运行。

但是当积分服务发生异常时且会阻塞30s时,订单服务就有有部分请求失败,且工作线程阻塞在调用积分服务上。

流量高峰时,问题会更加严重,订单服务的所有请求都会阻塞在调用积分服务上,工作线程全部挂起,导致机器资源耗尽,订单服务也不可用,造成级联影响,整个集群宕机,这种称为雪崩效应。

所以需要一种机制,使得单个服务出现故障时,整个集群可用性不受到影响。Hystrix就是实现这种机制的框架,下面我们分析一下Hystrix整体的工作机制。

二、整体机制

【入口】Hystrix的执行入口是HystrixCommand或HystrixObservableCommand对象,通常在Spring应用中会通过注解和AOP来实现对象的构造,以降低对业务代码的侵入性;

【缓存】HystrixCommand对象实际开始执行后,首先是否开启缓存,若开启缓存且命中,则直接返回;

【熔断】若熔断器打开,则执行短路,直接走降级逻辑;若熔断器关闭,继续下一步,进入隔离逻辑。熔断器的状态主要基于窗口期内执行失败率,若失败率过高,则熔断器自动打开;

【隔离】用户可配置走线程池隔离或信号量隔离,判断线程池任务已满(或信号量),则进入降级逻辑;否则继续下一步,实际由线程池任务线程执行业务调用;

【执行】实际开始执行业务调用,若执行失败或异常,则进入降级逻辑;若执行成功,则正常返回;

【超时】通过定时器延时任务检测业务调用执行是否超时,若超时则取消业务执行的线程,进入降级逻辑;若未超时,则正常返回。线程池、信号量两种策略均隔离方式支持超时配置(信号量策略存在缺陷);

【降级】进入降级逻辑后,当业务实现了HystrixCommand.getFallback() 方法,则返回降级处理的数据;当未实现时,则返回异常;

【统计】业务调用执行结果成功、失败、超时等均会进入统计模块,通过健康统计结果来决定熔断器打开或关闭。

都说源码里没有秘密,下面我们来分析下核心功能源码,看看Hystrix如何实现整体的工作机制。

三、熔断

家用电路中都有保险丝,保险丝的作用场景是,当电路发生故障或异常时,伴随着电流不断升高,并且升高的电流有可能损坏电路中的某些重要器件或贵重器件,也有可能烧毁电路甚至造成火灾。

若电路中正确地安置了保险丝,那么保险丝就会在电流异常升高到一定的高度和一定的时候,自身熔断切断电流,从而起到保护电路安全运行的作用。Hystrix提供的熔断器就有类似功能,应用调用某个服务提供者,当一定时间内请求总数超过配置的阈值,且窗口期内错误率过高,那Hystrix就会对调用请求熔断,后续的请求直接短路,直接进入降级逻辑,执行本地的降级策略。

Hystrix具有自我调节的能力,熔断器打开在一定时间后,会尝试通过一个请求,并根据执行结果调整熔断器状态,让熔断器在closed,open,half-open三种状态之间自动切换。

【HystrixCircuitBreaker】boolean attemptExecution():每次HystrixCommand执行,都要调用这个方法,判断是否可以继续执行,若熔断器状态为打开且超过休眠窗口,更新熔断器状态为half-open;通过CAS原子变更熔断器状态来保证只放过一条业务请求实际调用提供方,并根据执行结果调整状态。

public boolean attemptExecution() {
    //判断配置是否强制打开熔断器
    if (properties.circuitBreakerForceOpen().get()) {
        return false;
    }
    //判断配置是否强制关闭熔断器
    if (properties.circuitBreakerForceClosed().get()) {
        return true;
    }
    //判断熔断器开关是否关闭
    if (circuitOpened.get() == -1) {
        return true;
    } else {
        //判断请求是否在休眠窗口后
        if (isAfterSleepWindow()) {
            //更新开关为半开,并允许本次请求通过
            if (status.compareAndSet(Status.OPEN, Status.HALF_OPEN)) {
                return true;
            } else {
                return false;
            }
        } else {
            //拒绝请求
            return false;
        }
    }
}

【HystrixCircuitBreaker】void markSuccess():HystrixCommand执行成功后调用,当熔断器状态为half-open,更新熔断器状态为closed。此种情况为熔断器原本为open,放过单条请求实际调用服务提供者,并且后续执行成功,Hystrix自动调节熔断器为closed。

public void markSuccess() {
    //更新熔断器开关为关闭
    if (status.compareAndSet(Status.HALF_OPEN, Status.CLOSED)) {
        //重置订阅健康统计
        metrics.resetStream();
        Subscription previousSubscription = activeSubscription.get();
        if (previousSubscription != null) {
            previousSubscription.unsubscribe();
        }
        Subscription newSubscription = subscribeToStream();
        activeSubscription.set(newSubscription);
        //更新熔断器开关为关闭
        circuitOpened.set(-1L);
    }
}

【HystrixCircuitBreaker】void markNonSuccess():HystrixCommand执行成功后调用,若熔断器状态为half-open,更新熔断器状态为open。此种情况为熔断器原本为open,放过单条请求实际调用服务提供者,并且后续执行失败,Hystrix继续保持熔断器打开,并把此次请求作为休眠窗口期开始时间。

public void markNonSuccess() {
      //更新熔断器开关,从半开变为打开
      if (status.compareAndSet(Status.HALF_OPEN, Status.OPEN)) {
          //记录失败时间,作为休眠窗口开始时间
          circuitOpened.set(System.currentTimeMillis());
      }
  }

【HystrixCircuitBreaker】void subscribeToStream():熔断器订阅健康统计结果,若当前请求数据大于一定值且错误率大于阈值,自动更新熔断器状态为opened,后续请求短路,不再实际调用服务提供者,直接进入降级逻辑。

 private Subscription subscribeToStream() {
    //订阅监控统计信息
    return metrics.getHealthCountsStream()
            .observe()
            .subscribe(new Subscriber<HealthCounts>() {
                @Override
                public void onCompleted() {}
                @Override
                public void onError(Throwable e) {}
                @Override
                public void onNext(HealthCounts hc) {
                    // 判断总请求数量是否超过配置阈值,若未超过,则不改变熔断器状态
                    if (hc.getTotalRequests() < properties.circuitBreakerRequestVolumeThreshold().get()) {

                    } else {
                        //判断请求错误率是否超过配置错误率阈值,若未超过,则不改变熔断器状态;若超过,则错误率过高,更新熔断器状态未打开,拒绝后续请求
                        if (hc.getErrorPercentage() < properties.circuitBreakerErrorThresholdPercentage().get()) {

                        } else {
                            if (status.compareAndSet(Status.CLOSED, Status.OPEN)) {
                                circuitOpened.set(System.currentTimeMillis());
                            }
                        }
                    }
                }
            });
}

四、资源隔离

在货船中,为了防止漏水和火灾的扩散,一般会将货仓进行分割,避免了一个货仓出事导致整艘船沉没的悲剧。同样的,在Hystrix中,也采用了这样的舱壁模式,将系统中的服务提供者隔离起来,一个服务提供者延迟升高或者失败,并不会导致整个系统的失败,同时也能够控制调用这些服务的并发度。如下图,订单服务调用下游积分、库存等服务使用不同的线程池,当积分服务故障时,只会把对应线程池打满,而不会影响到其他服务的调用。Hystrix隔离模式支持线程池和信号量两种方式。

4.1 信号量模式

信号量模式控制单个服务提供者执行并发度,比如单个CommondKey下正在请求数为N,若N小于maxConcurrentRequests,则继续执行;若大于等于maxConcurrentRequests,则直接拒绝,进入降级逻辑。信号量模式使用请求线程本身执行,没有线程上下文切换,开销较小,但超时机制失效。

【AbstractCommand】Observable<R>applyHystrixSemantics(finalAbstractCommand<R> _cmd):尝试获取信号量,若能获取到,则继续调用服务提供者;若不能获取到,则进入降级策略。

private Observable<R> applyHystrixSemantics(final AbstractCommand<R> _cmd) {
    executionHook.onStart(_cmd);
    //判断熔断器是否通过
    if (circuitBreaker.attemptExecution()) {
        //获取信号量
        final TryableSemaphore executionSemaphore = getExecutionSemaphore();
        final AtomicBoolean semaphoreHasBeenReleased = new AtomicBoolean(false);
        final Action0 singleSemaphoreRelease = new Action0() {
            @Override
            public void call() {
                if (semaphoreHasBeenReleased.compareAndSet(false, true)) {
                    executionSemaphore.release();
                }
            }
        };
        final Action1<Throwable> markExceptionThrown = new Action1<Throwable>() {
            @Override
            public void call(Throwable t) {
                eventNotifier.markEvent(HystrixEventType.EXCEPTION_THROWN, commandKey);
            }
        };
        //尝试获取信号量
        if (executionSemaphore.tryAcquire()) {
            try {
                //记录业务执行开始时间
                executionResult = executionResult.setInvocationStartTime(System.currentTimeMillis());
                //继续执行业务
                return executeCommandAndObserve(_cmd)
                        .doOnError(markExceptionThrown)
                        .doOnTerminate(singleSemaphoreRelease)
                        .doOnUnsubscribe(singleSemaphoreRelease);
            } catch (RuntimeException e) {
                return Observable.error(e);
            }
        } else {
            //信号量拒绝,进入降级逻辑
            return handleSemaphoreRejectionViaFallback();
        }
    } else {
        //熔断器拒绝,直接短路,进入降级逻辑
        return handleShortCircuitViaFallback();
    }
}

【AbstractCommand】TryableSemaphore getExecutionSemaphore():获取信号量实例,若当前隔离模式为信号量,则根据commandKey获取信号量,不存在时初始化并缓存;若当前隔离模式为线程池,则使用默认信号量TryableSemaphoreNoOp.DEFAULT,全部请求可通过。

protected TryableSemaphore getExecutionSemaphore() {
    //判断隔离模式是否为信号量
    if (properties.executionIsolationStrategy().get() == ExecutionIsolationStrategy.SEMAPHORE) {
        if (executionSemaphoreOverride == null) {
            //获取信号量
            TryableSemaphore _s = executionSemaphorePerCircuit.get(commandKey.name());
            if (_s == null) {
                //初始化信号量并缓存
                executionSemaphorePerCircuit.putIfAbsent(commandKey.name(), new TryableSemaphoreActual(properties.executionIsolationSemaphoreMaxConcurrentRequests()));
                //返回信号量
                return executionSemaphorePerCircuit.get(commandKey.name());
            } else {
                return _s;
            }
        } else {
            return executionSemaphoreOverride;
        }
    } else {
        //返回默认信号量,任何请求均可通过
        return TryableSemaphoreNoOp.DEFAULT;
    }
}

4.2 线程池模式

线程池模式控制单个服务提供者执行并发度,代码上都会先走获取信号量,只是使用默认信号量,全部请求可通过,然后实际调用线程池逻辑。线程池模式下,比如单个CommondKey下正在请求数为N,若N小于maximumPoolSize,会先从 Hystrix 管理的线程池里面获得一个线程,然后将参数传递给任务线程去执行真正调用,如果并发请求数多于线程池线程个数,就有任务需要进入队列排队,但排队队列也有上限,如果排队队列也满,则进去降级逻辑。线程池模式可以支持异步调用,支持超时调用,存在线程切换,开销大。

【AbstractCommand】Observable<R>executeCommandWithSpecifiedIsolation(final AbstractCommand<R> _cmd):从线程池中获取线程,并执行,过程中记录线程状态。

private Observable<R> executeCommandWithSpecifiedIsolation(final AbstractCommand<R> _cmd) {
      //判断是否为线程池隔离模式
      if (properties.executionIsolationStrategy().get() == ExecutionIsolationStrategy.THREAD) {
          return Observable.defer(new Func0<Observable<R>>() {
              @Override
              public Observable<R> call() {
                  executionResult = executionResult.setExecutionOccurred();
                  if (!commandState.compareAndSet(CommandState.OBSERVABLE_CHAIN_CREATED, CommandState.USER_CODE_EXECUTED)) {
                      return Observable.error(new IllegalStateException("execution attempted while in state : " + commandState.get().name()));
                  }
                  //统计信息
                  metrics.markCommandStart(commandKey, threadPoolKey, ExecutionIsolationStrategy.THREAD);
                  //判断是否超时,若超时,直接抛出异常
                  if (isCommandTimedOut.get() == TimedOutStatus.TIMED_OUT) {
                      return Observable.error(new RuntimeException("timed out before executing run()"));
                  }
                  //更新线程状态为已开始
                  if (threadState.compareAndSet(ThreadState.NOT_USING_THREAD, ThreadState.STARTED)) {
                      HystrixCounters.incrementGlobalConcurrentThreads();
                      threadPool.markThreadExecution();
                      endCurrentThreadExecutingCommand = Hystrix.startCurrentThreadExecutingCommand(getCommandKey());
                      executionResult = executionResult.setExecutedInThread();
                      //执行hook,若异常,则直接抛出异常
                      try {
                          executionHook.onThreadStart(_cmd);
                          executionHook.onRunStart(_cmd);
                          executionHook.onExecutionStart(_cmd);
                          return getUserExecutionObservable(_cmd);
                      } catch (Throwable ex) {
                          return Observable.error(ex);
                      }
                  } else {
                      //空返回
                      return Observable.empty();
                  }
              }
          }).doOnTerminate(new Action0() {
              @Override
              public void call() {
                  //结束逻辑,省略
              }
          }).doOnUnsubscribe(new Action0() {
              @Override
              public void call() {
                  //取消订阅逻辑,省略
              }
              //从线程池中获取业务执行线程
          }).subscribeOn(threadPool.getScheduler(new Func0<Boolean>() {
              @Override
              public Boolean call() {
                  //判断是否超时
                  return properties.executionIsolationThreadInterruptOnTimeout().get() && _cmd.isCommandTimedOut.get() == TimedOutStatus.TIMED_OUT;
              }
          }));
      } else {
          //信号量模式
          //省略
      }
  }

【HystrixThreadPool】Subscription schedule(final Action0 action):HystrixContextScheduler是Hystrix对rx中Scheduler调度器的重写,主要为了实现在Observable未被订阅时,不执行命令,以及支持在命令执行过程中能够打断运行。在rx中,Scheduler将生成对应的Worker给Observable用于执行命令,由Worker具体负责相关执行线程的调度,ThreadPoolWorker是Hystrix自行实现的Worker,执行调度的核心方法。

public Subscription schedule(final Action0 action) {
    //若无订阅,则不执行直接返回
    if (subscription.isUnsubscribed()) {
        return Subscriptions.unsubscribed();
    }
    ScheduledAction sa = new ScheduledAction(action);
    subscription.add(sa);
    sa.addParent(subscription);
    //获取线程池
    ThreadPoolExecutor executor = (ThreadPoolExecutor) threadPool.getExecutor();
    //提交执行任务
    FutureTask<?> f = (FutureTask<?>) executor.submit(sa);
    sa.add(new FutureCompleterWithConfigurableInterrupt(f, shouldInterruptThread, executor));
    return sa;
}

五、超时检测

Hystrix超时机制降低了第三方依赖项延迟过高对调用方的影响,使请求快速失败。主要通过延迟任务机制实现,包括注册延时任务过程和执行延时任务过程。

当隔离策略为线程池时,主线程订阅执行结果,线程池中任务线程调用提供者服务端,同时会有定时器线程在一定时间后检测任务是否完成,若未完成则表示任务超时,抛出超时异常,并且后续任务线程的执行结果也会跳过不再发布;若已完成则表示任务在超时时间内完成执行完成,定时器检测任务结束。

当隔离策略为信号量时,主线程订阅执行结果并实际调用提供者服务端(没有任务线程),当超出指定时间,主线程仍然会执行完业务调用,然后抛出超时异常。信号量模式下超时配置有一定缺陷,不能取消在执行的调用,并不能限制主线程返回时间。

【AbstractCommand】Observable<R>executeCommandAndObserve(finalAbstractCommand<R> _cmd):超时检测入口,执行lift(new HystrixObservableTimeoutOperator<R>(_cmd))关联超时检测任务。

private Observable<R> executeCommandAndObserve(final AbstractCommand<R> _cmd) {
    //省略
    Observable<R> execution;
    //判断是否开启超时检测
​    if (properties.executionTimeoutEnabled().get()) {
        execution = executeCommandWithSpecifiedIsolation(_cmd)
                //增加超时检测操作
                .lift(new HystrixObservableTimeoutOperator<R>(_cmd));
    } else {
        //正常执行
        execution = executeCommandWithSpecifiedIsolation(_cmd);
    }
    return execution.doOnNext(markEmits)
            .doOnCompleted(markOnCompleted)
            .onErrorResumeNext(handleFallback)
            .doOnEach(setRequestContext);
}

【HystrixObservableTimeoutOperator】Subscriber<? super R> call(final Subscriber<? super R> child):创建检测任务,并关联延迟任务;若检测任务执行时仍未执行完成,则抛出超时异常;若已执行完成或异常,则清除检测任务。

public Subscriber<? super R> call(final Subscriber<? super R> child) {
        final CompositeSubscription s = new CompositeSubscription();
        child.add(s);
        final HystrixRequestContext hystrixRequestContext = HystrixRequestContext.getContextForCurrentThread();
        //实列化监听器
        TimerListener listener = new TimerListener() {
            @Override
            public void tick() {
                //若任务未执行完成,则更新为超时
                if (originalCommand.isCommandTimedOut.compareAndSet(TimedOutStatus.NOT_EXECUTED, TimedOutStatus.TIMED_OUT)) {
                    // 上报超时失败
                    originalCommand.eventNotifier.markEvent(HystrixEventType.TIMEOUT, originalCommand.commandKey);
                    // 取消订阅
                    s.unsubscribe();
                    final HystrixContextRunnable timeoutRunnable = new HystrixContextRunnable(originalCommand.concurrencyStrategy, hystrixRequestContext, new Runnable() {

                        @Override
                        public void run() {
                            child.onError(new HystrixTimeoutException());
                        }
                    });
                    //抛出超时异常
                    timeoutRunnable.run();
                }
            }
            //超时时间配置
            @Override
            public int getIntervalTimeInMilliseconds() {
                return originalCommand.properties.executionTimeoutInMilliseconds().get();
            }
        };
        //注册监听器,关联检测任务
        final Reference<TimerListener> tl = HystrixTimer.getInstance().addTimerListener(listener);
        originalCommand.timeoutTimer.set(tl);
        Subscriber<R> parent = new Subscriber<R>() {
            @Override
            public void onCompleted() {
                if (isNotTimedOut()) {
                    // 未超时情况下,任务执行完成,清除超时检测任务
                    tl.clear();
                    child.onCompleted();
                }
            }
            @Override
            public void onError(Throwable e) {
                if (isNotTimedOut()) {
                    // 未超时情况下,任务执行异常,清除超时检测任务
                    tl.clear();
                    child.onError(e);
                }
            }
            @Override
            public void onNext(R v) {
                    //未超时情况下,发布执行结果;超时时则直接跳过发布执行结果
                if (isNotTimedOut()) {
                    child.onNext(v);
                }
            }
            //判断是否超时
            private boolean isNotTimedOut() {
                return originalCommand.isCommandTimedOut.get() == TimedOutStatus.COMPLETED ||
                        originalCommand.isCommandTimedOut.compareAndSet(TimedOutStatus.NOT_EXECUTED, TimedOutStatus.COMPLETED);
            }
        };
        s.add(parent);
        return parent;
    }
}

【HystrixTimer】Reference<TimerListener>addTimerListener(finalTimerListener listener):addTimerListener通过java的定时任务服务scheduleAtFixedRate在延迟超时时间后执行。

public Reference<TimerListener> addTimerListener(final TimerListener listener) {//初始化xianstartThreadIfNeeded();//构造检测任务Runnable r = new Runnable() {

public Reference<TimerListener> addTimerListener(final TimerListener listener) {
    //初始化xian
    startThreadIfNeeded();
    //构造检测任务
    Runnable r = new Runnable() {

        @Override
        public void run() {
            try {
                listener.tick();
            } catch (Exception e) {
                logger.error("Failed while ticking TimerListener", e);
            }
        }
    };
    //延迟执行检测任务
    ScheduledFuture<?> f = executor.get().getThreadPool().scheduleAtFixedRate(r, listener.getIntervalTimeInMilliseconds(), listener.getIntervalTimeInMilliseconds(), TimeUnit.MILLISECONDS);
    return new TimerReference(listener, f);
}

六、降级

Hystrix降级逻辑作为兜底的策略,当出现业务执行异常、线程池或信号量已满、执行超时等情况时,会进入降级逻辑。降级逻辑中应从内存或静态逻辑获取通用返回,尽量不依赖依赖网络调用,如果未实现降级方法或降级方法中也出现异常,则业务线程中会引发异常。

【AbstractCommand】Observable<R> getFallbackOrThrowException(finalAbstractCommand<R> _cmd, final HystrixEventType eventType, final FailureType failureType, final String message, final Exception originalException):首先判断是否为不可恢复异常,若是则不走降级逻辑,直接异常返回;其次判断是否能获取到降级信号量,然后走降级逻辑;当降级逻辑中也发生异常或者没有降级方法实现时,则异常返回。

private Observable<R> getFallbackOrThrowException(final AbstractCommand<R> _cmd, final HystrixEventType eventType, final FailureType failureType, final String message, final Exception originalException) {
    final HystrixRequestContext requestContext = HystrixRequestContext.getContextForCurrentThread();
    long latency = System.currentTimeMillis() - executionResult.getStartTimestamp();
    executionResult = executionResult.addEvent((int) latency, eventType);
    //判断是否为不可恢复异常,如栈溢出、OOM等
    if (isUnrecoverable(originalException)) {
        logger.error("Unrecoverable Error for HystrixCommand so will throw HystrixRuntimeException and not apply fallback. ", originalException);
        Exception e = wrapWithOnErrorHook(failureType, originalException);
        //直接返回异常
        return Observable.error(new HystrixRuntimeException(failureType, this.getClass(), getLogMessagePrefix() + " " + message + " and encountered unrecoverable error.", e, null));
    } else {
        //判断为是否可恢复错误
        if (isRecoverableError(originalException)) {
            logger.warn("Recovered from java.lang.Error by serving Hystrix fallback", originalException);
        }
        //判断降级配置是否打开
        if (properties.fallbackEnabled().get()) {
          /**
            * 省略
            */
            final Func1<Throwable, Observable<R>> handleFallbackError = new Func1<Throwable, Observable<R>>() {
                @Override
                public Observable<R> call(Throwable t) {
                    Exception e = wrapWithOnErrorHook(failureType, originalException);
                    Exception fe = getExceptionFromThrowable(t);

                    long latency = System.currentTimeMillis() - executionResult.getStartTimestamp();
                    Exception toEmit;
                    //是否是不支持操作异常,当业务中没有覆写getFallBack方法时,会抛出此异常
                    if (fe instanceof UnsupportedOperationException) {
                        logger.debug("No fallback for HystrixCommand. ", fe);
                        eventNotifier.markEvent(HystrixEventType.FALLBACK_MISSING, commandKey);
                        executionResult = executionResult.addEvent((int) latency, HystrixEventType.FALLBACK_MISSING);
                        toEmit = new HystrixRuntimeException(failureType, _cmd.getClass(), getLogMessagePrefix() + " " + message + " and no fallback available.", e, fe);
                    } else {
                        //执行降级逻辑时发生异常
                        logger.debug("HystrixCommand execution " + failureType.name() + " and fallback failed.", fe);
                        eventNotifier.markEvent(HystrixEventType.FALLBACK_FAILURE, commandKey);
                        executionResult = executionResult.addEvent((int) latency, HystrixEventType.FALLBACK_FAILURE);
                        toEmit = new HystrixRuntimeException(failureType, _cmd.getClass(), getLogMessagePrefix() + " " + message + " and fallback failed.", e, fe);
                    }
                    //判断异常是否包装
                    if (shouldNotBeWrapped(originalException)) {
                        //抛出异常
                        return Observable.error(e);
                    }
                    //抛出异常
                    return Observable.error(toEmit);
                }
            };
            //获取降级信号量
            final TryableSemaphore fallbackSemaphore = getFallbackSemaphore();
            final AtomicBoolean semaphoreHasBeenReleased = new AtomicBoolean(false);
            final Action0 singleSemaphoreRelease = new Action0() {
                @Override
                public void call() {
                    if (semaphoreHasBeenReleased.compareAndSet(false, true)) {
                        fallbackSemaphore.release();
                    }
                }
            };
            Observable<R> fallbackExecutionChain;
            // 尝试获取降级信号量
            if (fallbackSemaphore.tryAcquire()) {
                try {
                    //判断是否定义了fallback方法
                    if (isFallbackUserDefined()) {
                        executionHook.onFallbackStart(this);
                        //执行降级逻辑
                        fallbackExecutionChain = getFallbackObservable();
                    } else {
                        //执行降级逻辑
                        fallbackExecutionChain = getFallbackObservable();
                    }
                } catch (Throwable ex) {
                    fallbackExecutionChain = Observable.error(ex);
                }
                return fallbackExecutionChain
                        .doOnEach(setRequestContext)
                        .lift(new FallbackHookApplication(_cmd))
                        .lift(new DeprecatedOnFallbackHookApplication(_cmd))
                        .doOnNext(markFallbackEmit)
                        .doOnCompleted(markFallbackCompleted)
                        .onErrorResumeNext(handleFallbackError)
                        .doOnTerminate(singleSemaphoreRelease)
                        .doOnUnsubscribe(singleSemaphoreRelease);
            } else {
                //处理降级信号量拒绝异常
               return handleFallbackRejectionByEmittingError();
            }
        } else {
            //处理降级配置关闭时异常
            return handleFallbackDisabledByEmittingError(originalException, failureType, message);
        }
    }
}

【HystrixCommand】R getFallback():HystrixCommand默认抛出操作不支持异常,需要子类覆写getFalBack方法实现降级逻辑。

protected R getFallback() {
    throw new UnsupportedOperationException("No fallback available.");
}

七、健康统计

Hystrix基于通过滑动窗口的数据统计判定服务失败占比选择性熔断,能够实现快速失败并走降级逻辑。步骤如下:

  • AbstractCommand执行完成后调⽤ handleCommandEnd⽅法将执行结果HystrixCommandCompletion事件发布到事件流中;

  • 事件流通过 Observable.window()⽅法将事件按时间分组,并通过 flatMap()⽅法将事件按类型(成功、失败等)聚合成桶,形成桶流;

  • 再将各个桶使⽤Observable.window()按窗口内桶数量聚合成滑动窗⼝数据;

  • 将滑动窗口数据聚合成数据对象(如健康数据流、累计数据等);

  • 熔断器CircuitBreaker初始化时订阅健康数据流,根据健康情况修改熔断器的开关。

【AbstractCommand】void handleCommandEnd(boolean commandExecutionStarted):在业务执行完毕后,会调用handleCommandEnd方法,在此方法中,上报执行结果executionResult,这也是健康统计的入口。

private void handleCommandEnd(boolean commandExecutionStarted) {
    Reference<TimerListener> tl = timeoutTimer.get();
    if (tl != null) {
        tl.clear();
    }
​
    long userThreadLatency = System.currentTimeMillis() - commandStartTimestamp;
    executionResult = executionResult.markUserThreadCompletion((int) userThreadLatency);
    //执行结果上报健康统计
    if (executionResultAtTimeOfCancellation == null) {
        metrics.markCommandDone(executionResult, commandKey, threadPoolKey, commandExecutionStarted);
    } else {
        metrics.markCommandDone(executionResultAtTimeOfCancellation, commandKey, threadPoolKey, commandExecutionStarted);
    }
​
    if (endCurrentThreadExecutingCommand != null) {
        endCurrentThreadExecutingCommand.call();
    }
}

【BucketedRollingCounterStream】BucketedRollingCounterStream(HystrixEventStream<Event> stream, final int numBuckets, int bucketSizeInMs,final Func2<Bucket, Event, Bucket> appendRawEventToBucket,final Func2<Output, Bucket, Output> re-duceBucket)

健康统计类HealthCountsStream的滑动窗口实现主要是在父类BucketedRollingCounterStream,首先父类BucketedCounterStream将事件流处理成桶流,BucketedRollingCounterStream处理成滑动窗口,然后由HealthCountsStream传入的reduceBucket函数处理成健康统计信息.

protected BucketedRollingCounterStream(HystrixEventStream<Event> stream, final int numBuckets, int bucketSizeInMs,
                                       final Func2<Bucket, Event, Bucket> appendRawEventToBucket,
                                       final Func2<Output, Bucket, Output> reduceBucket) {
    //调用父类,数据处理成桶流
    super(stream, numBuckets, bucketSizeInMs, appendRawEventToBucket);
    //根据传入的reduceBucket函数,处理滑动窗口内数据
    Func1<Observable<Bucket>, Observable<Output>> reduceWindowToSummary = new Func1<Observable<Bucket>, Observable<Output>>() {
        @Override
        public Observable<Output> call(Observable<Bucket> window) {
            return window.scan(getEmptyOutputValue(), reduceBucket).skip(numBuckets);
        }
    };
    //对父类桶流数据进行操作
    this.sourceStream = bucketedStream
    //窗口内桶数量为numBuckets,每次移动1个桶
            .window(numBuckets, 1)
            //滑动窗口内数据处理
            .flatMap(reduceWindowToSummary)
            .doOnSubscribe(new Action0() {
                @Override
                public void call() {
                    isSourceCurrentlySubscribed.set(true);
                }
            })
            .doOnUnsubscribe(new Action0() {
                @Override
                public void call() {
                    isSourceCurrentlySubscribed.set(false);
                }
            })
            .share()
            .onBackpressureDrop();
}

【HealthCounts】HealthCounts plus(long[] eventTypeCounts):对桶内数据按事件类型累计,生成统计数据HealthCounts;

public HealthCounts plus(long[] eventTypeCounts) {
    long updatedTotalCount = totalCount;
    long updatedErrorCount = errorCount;
​
    long successCount = eventTypeCounts[HystrixEventType.SUCCESS.ordinal()];
    long failureCount = eventTypeCounts[HystrixEventType.FAILURE.ordinal()];
    long timeoutCount = eventTypeCounts[HystrixEventType.TIMEOUT.ordinal()];
    long threadPoolRejectedCount = eventTypeCounts[HystrixEventType.THREAD_POOL_REJECTED.ordinal()];
    long semaphoreRejectedCount = eventTypeCounts[HystrixEventType.SEMAPHORE_REJECTED.ordinal()];
    //总数
    updatedTotalCount += (successCount + failureCount + timeoutCount + threadPoolRejectedCount + semaphoreRejectedCount);
    //失败数
    updatedErrorCount += (failureCount + timeoutCount + threadPoolRejectedCount + semaphoreRejectedCount);
    return new HealthCounts(updatedTotalCount, updatedErrorCount);
}

八、总结

在分布式环境中,不可避免地会有许多服务的依赖项中有的失败。Hystrix作为一个库,可通过添加熔断、隔离、降级等逻辑来帮助用户控制分布式服务之间的交互,以提高系统的整体弹性。主要功能如下:

  • 保护系统,控制来自访问第三方依赖项(通常是通过网络)的延迟和失败

  • 阻止复杂分布式系统中的级联故障

  • 快速失败并快速恢复

  • 平滑降级

  • 近乎实时的监控,警报和控制

Hystrix使用过程中,有一些要注意的点:

  • 覆写的getFallback()方法,尽量不要有网络依赖。如果有网络依赖,建议采用多次降级,即在getFallback()内实例化 HystrixCommand,并执行Command。getFallback()尽量保证高性能返回,快速降级。

  • HystrixCommand 建议采用的是线程隔离策略。

  • hystrix.threadpool.default.allowMaximumSizeToDivergeFromCoreSize设置为true时,hystrix.threadpool.default.maximumSize才会生效。最大线程数需要根据业务自身情况和性能测试结果来考量,尽量初始时设置小一些,支持动态调整大小,因为它是减少负载并防止资源在延迟发生时被阻塞的主要工具。

  • 信号隔离策略下,执行业务逻辑时,使用的是应用服务的父级线程(如Tomcat容器线程)。所以,一定要设置好并发量,有网络开销的调用,不建议使用该策略,容易导致容器线程排队堵塞,从而影响整个应用服务。

  • 另外Hystrix高度依赖RxJava这个响应式函数编程框架,简单了解RxJava的使用方式,有利于理解源码逻辑。

参考文档

Hystrix Github仓库:https://github.com/Netflix/Hystrix

以上是关于从源码分析Hystrix工作机制的主要内容,如果未能解决你的问题,请参考以下文章

从源码分析Hystrix工作机制

从源码分析Hystrix工作机制

feign集成hystrix全流程源码分析

SpringCloud技术专题「Eureka源码分析」从源码层面让你认识Eureka工作流程和运作机制(下)

SpringCloud技术专题「Eureka源码分析」从源码层面让你认识Eureka工作流程和运作机制(上)

Android 插件化VirtualApp 源码分析 ( 目前的 API 现状 | 安装应用源码分析 | 安装按钮执行的操作 | 返回到 HomeActivity 执行的操作 )(代码片段