大数据—— YARN
Posted 孙中明
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据—— YARN相关的知识,希望对你有一定的参考价值。
源码见:https://github.com/hiszm/hadoop-train
YARN产生背景
YARN架构详解
- Client
- 向
RM
提交任务 - 杀死任务
- ResourceManager
ResourceManager
通常在独立的机器上以后台进程的形式运行,它是整个 集群资源的主要协调者和管理者 。- 负责给用户提交的所有应用程序分配资源 ,它根据应用程序优先级、队列容量、ACLs、数据位置等信息,做出决策,然后以共享的、安全的、多租户的方式制定分配策略,调度集群资源。
- NodeManager
NodeManager
是 YARN 集群中的每个具体 节点的管理者 。-
主要 负责该节点内所有容器的生命周期的管理,监视资源和跟踪节点健康 。具体如下:
- 启动时向
ResourceManager
注册并定时发送心跳消息,等待ResourceManager
的指令; - 维护
Container
的生命周期,监控Container
的资源使用情况; - 管理任务运行时的相关依赖,根据
ApplicationMaster
的需要,在启动Container
之前将需要的程序及其依赖拷贝到本地。
- 启动时向
- ApplicationMaster
- 在用户提交一个应用程序时,YARN 会启动一个轻量级的 进程
ApplicationMaster
。 -
ApplicationMaster
负责协调来自ResourceManager
的资源,并通过NodeManager
监视容器内资源的使用情况,同时还负责任务的监控与容错。具体如下:- 根据应用的运行状态来决定动态计算资源需求;
- 向
ResourceManager
申请资源,监控申请的资源的使用情况; - 跟踪任务状态和进度,报告资源的使用情况和应用的进度信息;
- 负责任务的容错。
- Container
Container
是 YARN 中的 资源抽象 ,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等。- 当 AM 向 RM 申请资源时,RM 为 AM 返回的资源是用
Container
表示的。 - YARN 会为每个任务分配一个
Container
,该任务只能使用该Container
中描述的资源。ApplicationMaster
可在Container
内运行任何类型的任务。例如,MapReduce ApplicationMaster
请求一个容器来启动 map 或 reduce 任务
YARN执行流程
-
客户端
client
向yarn集群
提交作业 , 首先①向ResourceManager
申请分配资源 -
Resource Manager
会为作业分配一个Container(Application manager)
,Container
里面运行这(Application Manager) -
Resource Manager
会找一个对应的NodeManager
通信②,要求NodeManager
在这个container
上启动应用程序Application Master
③ -
Application Master
向Resource Manager
申请资源④(采用轮询的方式通过RPC
协议),Resource scheduler
将资源封装发给Application master
④, -
Application Master
将获取到的资源分配给各个Node Manager
,并监控运行情况⑤ -
Node Manage
得到任务和资源开始执行作业⑥ - 再细分作业的话可以分为 先执行
Map Task
,结束后在执行Reduce Task
最后再将结果返回給Application Master
等依次往上层递交⑦
YARN环境部署
- YARN on Single Node
Configure parameters as follows:
etc/hadoop/mapred-site.xml:
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
etc/hadoop/yarn-site.xml:
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
Start ResourceManager daemon and NodeManager daemon:$ sbin/start-yarn.sh
Browse the web interface for the ResourceManager; by default it is available at:
ResourceManager - http://localhost:8088/
Run a MapReduce job.
When you\'re done, stop the daemons with:$ sbin/stop-yarn.sh
[hadoop@hadoop000 hadoop]$ pwd
/home/hadoop/app/hadoop-2.6.0-cdh5.15.1/etc/hadoop
[hadoop@hadoop000 hadoop]$ vi mapred-site.xml
[hadoop@hadoop000 hadoop]$ vi yarn-site.xml
[hadoop@hadoop000 sbin]$ jps
7234 NodeManager
8131 Jps
7588 NameNode
7962 SecondaryNameNode
7116 ResourceManager
7791 DataNode
http://192.168.43.200:8088/cluster
[hadoop@hadoop000 hadoop]$ pwd
/home/hadoop/app/hadoop-2.6.0-cdh5.15.1/share/hadoop
[hadoop@hadoop000 hadoop]$ ls
common httpfs mapreduce mapreduce2 yarn
hdfs kms mapreduce1 tools
[hadoop@hadoop000 hadoop]$ pwd
/home/hadoop/app/hadoop-2.6.0-cdh5.15.1/share/hadoop
[hadoop@hadoop000 hadoop]$ cd mapreduce
[hadoop@hadoop000 mapreduce]$ ls
hadoop-mapreduce-client-app-2.6.0-cdh5.15.1.jar
hadoop-mapreduce-client-common-2.6.0-cdh5.15.1.jar
hadoop-mapreduce-client-core-2.6.0-cdh5.15.1.jar
hadoop-mapreduce-client-hs-2.6.0-cdh5.15.1.jar
hadoop-mapreduce-client-hs-plugins-2.6.0-cdh5.15.1.jar
hadoop-mapreduce-client-jobclient-2.6.0-cdh5.15.1.jar
hadoop-mapreduce-client-jobclient-2.6.0-cdh5.15.1-tests.jar
hadoop-mapreduce-client-nativetask-2.6.0-cdh5.15.1.jar
hadoop-mapreduce-client-shuffle-2.6.0-cdh5.15.1.jar
hadoop-mapreduce-examples-2.6.0-cdh5.15.1.jar
lib
lib-examples
sources
提交example案例到YARN上运行
hadoop jar hadoop-mapreduce-examples-2.6.0-cdh5.15.1.jar pi 2 3
[hadoop@hadoop000 ~]$ hadoop dfs -cat /wc/input/1.txt
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.
hello world hello
hello
hello world
[hadoop@hadoop000 ~]$
hadoop jar hadoop-mapreduce-examples-2.6.0-cdh5.15.1.jar wordcount /wc/input /wc/output
[hadoop@hadoop000 ~]$ hadoop dfs -cat /wc/output/part-r-00000
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.
hello 4
world 2
提交流量统计案例到YARN上运行
mvn clean package -DskipTests
注意在当前的项目环境(base) locahost:untitled5 jacksun$ mvn clean package -DskipTests [INFO] Scanning for projects... [INFO] [INFO] -----------------------< org.example:untitled5 >------------------------ [INFO] Building untitled5 1.0-SNAPSHOT [INFO] --------------------------------[ jar ]--------------------------------- [INFO] [INFO] --- maven-clean-plugin:3.1.0:clean (default-clean) @ untitled5 --- [INFO] Deleting /Users/jacksun/IdeaProjects/untitled5/target [INFO] [INFO] --- maven-resources-plugin:3.0.2:resources (default-resources) @ untitled5 --- [INFO] Using \'UTF-8\' encoding to copy filtered resources. [INFO] Copying 2 resources [INFO] [INFO] --- maven-compiler-plugin:3.8.0:compile (default-compile) @ untitled5 --- [INFO] Changes detected - recompiling the module! [INFO] Compiling 15 source files to /Users/jacksun/IdeaProjects/untitled5/target/classes [INFO] [INFO] --- maven-resources-plugin:3.0.2:testResources (default-testResources) @ untitled5 --- [INFO] Using \'UTF-8\' encoding to copy filtered resources. [INFO] skip non existing resourceDirectory /Users/jacksun/IdeaProjects/untitled5/src/test/resources [INFO] [INFO] --- maven-compiler-plugin:3.8.0:testCompile (default-testCompile) @ untitled5 --- [INFO] Changes detected - recompiling the module! [INFO] Compiling 2 source files to /Users/jacksun/IdeaProjects/untitled5/target/test-classes [INFO] [INFO] --- maven-surefire-plugin:2.22.1:test (default-test) @ untitled5 --- [INFO] Tests are skipped. [INFO] [INFO] --- maven-jar-plugin:3.0.2:jar (default-jar) @ untitled5 --- [INFO] Building jar: /Users/jacksun/IdeaProjects/untitled5/target/untitled5-1.0-SNAPSHOT.jar [INFO] ------------------------------------------------------------------------ [INFO] BUILD SUCCESS [INFO] ------------------------------------------------------------------------ [INFO] Total time: 43.078 s [INFO] Finished at: 2020-09-02T10:04:51+08:00 [INFO] ------------------------------------------------------------------------ (base) locahost:untitled5 jacksun$ ls D: access output src Hadoop.iml input pom.xml target (base) locahost:untitled5 jacksun$ cd target/ (base) locahost:target jacksun$ ls classes maven-status generated-sources test-classes generated-test-sources untitled5-1.0-SNAPSHOT.jar maven-archiver (base) locahost:target jacksun$
(base) locahost:target jacksun$ scp untitled5-1.0-SNAPSHOT.jar hadoop@192.168.43.200:~/lib/
hadoop@192.168.43.200\'s password:
untitled5-1.0-SNAPSHOT.jar 100% 18KB 750.6KB/s 00:00
(base) locahost:target jacksun$
- 到编译后的`/target/`目录jar包和相关的数据上传到服务器`scp xxx hadoop@localhost:dir`
- 再上传到`hdfs `用`Hadoop fs -put /dir`
hadoop jar untitled5-1.0-SNAPSHOT.jar com.bigdata.hadoop.mr.access.AccessYARNApp /access/input/access.log /access/ouput/
- 执行作业` hadoop jar xx.jar `完整的类名和包名` args参数`
20/09/02 10:13:22 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
20/09/02 10:13:22 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
20/09/02 10:13:23 INFO input.FileInputFormat: Total input paths to process : 1
20/09/02 10:13:24 INFO mapreduce.JobSubmitter: number of splits:1
20/09/02 10:13:24 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1598998523059_0003
20/09/02 10:13:25 INFO impl.YarnClientImpl: Submitted application application_1598998523059_0003
20/09/02 10:13:25 INFO mapreduce.Job: The url to track the job: http://hadoop000:8088/proxy/application_1598998523059_0003/
20/09/02 10:13:25 INFO mapreduce.Job: Running job: job_1598998523059_0003
20/09/02 10:13:35 INFO mapreduce.Job: Job job_1598998523059_0003 running in uber mode : false
20/09/02 10:13:35 INFO mapreduce.Job: map 0% reduce 0%
20/09/02 10:13:42 INFO mapreduce.Job: map 100% reduce 0%
20/09/02 10:13:51 INFO mapreduce.Job: map 100% reduce 33%
20/09/02 10:13:53 INFO mapreduce.Job: map 100% reduce 67%
20/09/02 10:14:01 INFO mapreduce.Job: map 100% reduce 100%
20/09/02 10:14:03 INFO mapreduce.Job: Job job_1598998523059_0003 completed successfully
20/09/02 10:14:03 INFO mapreduce.Job: Counters: 50
File System Counters
FILE: Number of bytes read=1185
FILE: Number of bytes written=575593
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=2444
HDFS: Number of bytes written=552
HDFS: Number of read operations=12
HDFS: Number of large read operations=0
HDFS: Number of write operations=6
Job Counters
Killed reduce tasks=1
Launched map tasks=1
Launched reduce tasks=3
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=13914
Total time spent by all reduces in occupied slots (ms)=71064
Total time spent by all map tasks (ms)=4638
Total time spent by all reduce tasks (ms)=23688
Total vcore-milliseconds taken by all map tasks=4638
Total vcore-milliseconds taken by all reduce tasks=23688
Total megabyte-milliseconds taken by all map tasks=14247936
Total megabyte-milliseconds taken by all reduce tasks=72769536
Map-Reduce Framework
Map input records=23
Map output records=23
Map output bytes=1121
Map output materialized bytes=1185
Input split bytes=110
Combine input records=0
Combine output records=0
Reduce input groups=21
Reduce shuffle bytes=1185
Reduce input records=23
Reduce output records=21
Spilled Records=46
Shuffled Maps =3
Failed Shuffles=0
Merged Map outputs=3
GC time elapsed (ms)=696
CPU time spent (ms)=8510
Physical memory (bytes) snapshot=783241216
Virtual memory (bytes) snapshot=16559239168
Total committed heap usage (bytes)=674758656
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=2334
File Output Format Counters
Bytes Written=552
[hadoop@hadoop000 lib]$ hadoop fs -ls /access/ouput/
Found 4 items
-rw-r--r-- 1 hadoop supergroup 0 2020-09-02 10:14 /access/ouput/_SUCCESS
-rw-r--r-- 1 hadoop supergroup 393 2020-09-02 10:13 /access/ouput/part-r-00000
-rw-r--r-- 1 hadoop supergroup 80 2020-09-02 10:13 /access/ouput/part-r-00001
-rw-r--r-- 1 hadoop supergroup 79 2020-09-02 10:13 /access/ouput/part-r-00002
[hadoop@hadoop000 lib]$ hadoop fs -cat /access/ouput/part-r-00000
13480253104,180,180,360
13502468823,7335,110349,117684
13560436666,1116,954,2070
13560439658,2034,5892,7926
13602846565,1938,2910,4848
13660577991,6960,690,7650
13719199419,240,0,240
13726230503,2481,24681,27162
13726238888,12481,44681,57162
13760778710,120,120,240
13826544101,264,0,264
13922314466,3008,3720,6728
13925057413,11058,48243,59301
13926251106,240,0,240
13926435656,132,1512,1644
[hadoop@hadoop000 lib]$
![](https://s4.51cto.com/images/blog/202108/10/7c575fed28554c03b5464a8c5ae029a1.png?x-oss-process=image/watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=)
- 到`http://192.168.43.200:8088/cluster/`观察结果
![image.png](https://s2.51cto.com/images/20210810/1628576259203148.png?x-oss-process=image/watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=)
以上是关于大数据—— YARN的主要内容,如果未能解决你的问题,请参考以下文章
大数据IMF-L38-MapReduce内幕解密听课笔记及总结